ICOP-0101 PC/104 48 Bit Digital I/O Module Quick Reference Manual

(Version 3.2)

Copyright Notice

This document is copyrighted, 2000 by ICOP Technology Inc. All rights are reserved. The information in the manual is subject to change without notice in order to improving products.

No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of the manufacturer.

ICOP Technology Inc. assumes no responsibility for any inaccuracies that may be contained in this document. ICOP Technology Inc. makes no commitment to update or to keep current the information contained in this manual.

ã Copyright 2000 by ICOP Technology Inc. All rights reserved. Ver.2.1 2000, Printed in Taiwan

Trademarks Acknowledgments

All brand names and trademarks are the properties and registered brands of their respective owners.

Table of Contents

Chapter 0	Packing List	1
Chapter 1	Specifications	2
Chapter 2	Jumper Settings	4
Chapter 3	Operational Description	6
Chapter 4	I/O Port Pin Assignment	10
Warranty		12

Chapter 0 Packing List

Function	Function	Package
ICOP-0101	48 Bit Digital I/O Module	ICOP-0101 48 Bit Digital I/O PC/104 Module

Chapter 1

Specifications

Description

The ICOP-0101 is a 48-bit digital I/O module. The module can be used together with TTL level input /output circuitry. Its 48 bits are arranged in two 24-bit digital I/O groups. Each group emulates an 8255 PPI (programmable peripheral interface) mode 0, but has a higher driving capacity than the 8255 PPI. Each 24-bit group is divided into three 8-bit ports. A port can be configured to function as input or output.

- 48 digital I/O lines (2 groups)
- Group emulates 8225 PPI mode 0
- Buffered circuits for higher driving capacity than 8255 PPI
- Bit 0 of port C can generate an interrupt to IRQ 2, 3, 4, 5, 6, 7
- Interrupt trigger on rising / falling edge
- Output status readback
- Pin-compatible with OPTO-22 I/O module racks
- Transfer rate: 300 KB/sec. (typical)
- Digital output:

Logic level 0: 0.5 V max. @ 24 mA sink

Logic level 1: 2.0 V min. @ 15 mA source

Digital input:

Logic level 0: 0.8 V max.

Logic level 1: 2.0 V min.

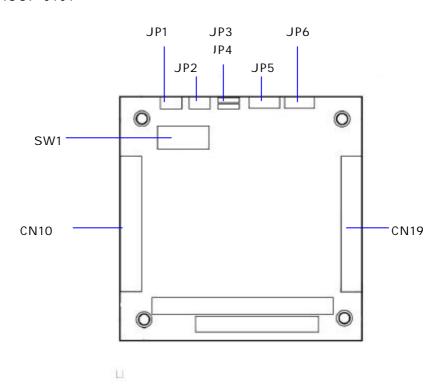
Power requirements:

Single 5V @ 600 mA

Physical and Environmental

Dimensions: 95 x 90 mm

Weight: 100 gram


Operating temperature: 0 ~ +50°C

Storage temperature: -25 ~ +80°C

• Relative humidity: 0 ~ 90% non-condensing

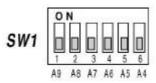
Component Location

ICOP-0101

JP1 ~ JP2: IRQ select

JP3 ~ JP4: IRQ Level select JP5 ~ JP6: IRQ Mode select

SW 1: Address select


CN10: Group 1 CN19: Group 2

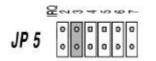
Chapter 2

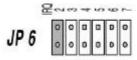
Jumper Setting

Base Address Setting (SW1)

The ICOP-0101 occupies 8 consecutive I/O locations. Dip-switch SW1 sets the base address for the ICOP-0101. Be careful when selecting the base address as some settings can conflict with existing PC ports. The following table shows common examples that usually will not cause a conflict.

Hex	1	2	3	4	5	6				
000-00F	ON	ON	ON	ON	ON	ON				
010-01F	ON	ON	ON	ON	ON	OFF				
200-20F	OFF	ON	ON	ON	ON	ON				
210-21F	OFF	ON	ON	ON	ON	OFF				
300-30F	OFF	OFF	ON	ON	ON	ON				
1 1111181										
3F0-3FF	OFF	OFF	OFF	OFF	OFF	OFF				

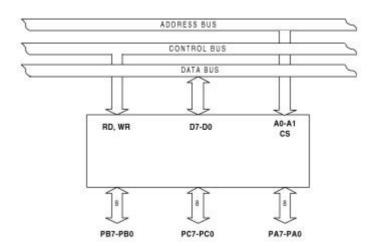

Interrupt Setting (JP5, JP6)


Jumper 3 and 4 control the trigger edge (rising or falling) on both pin PC00 (JP3) and PC10 (JP4).

Rising edge: an interrupt will be generated when the the I/O line (PC00 or PC10) changes from TTL Low to TTL High.

Falling edge: an interrupt will be generated when the the I/O line (PC00 or PC10) changes from TTL High to TTL Low.

In the situation on the right the interrupt on line PC00 is set to be triggered on the rising edge. The interrupt on line PC10 is set to be triggered on the falling edge.


Interrupt Mode (JP1, JP2)

The interrupt function can be enabled (INT) or disabled (DIS) by jumper setting. A third option, a more dynamic approach, is to choose for an external device to enable/disable the interrupt function (EXT).

Although you can only make one choice for both groups, the groups interrupt function can be enabled/disabled separately when you choose for the EXT setting. Line PC04 and PC14 control the mode of interrupt for PC00 and PC10. TTL Low disables an interrupt and TTL High enables an interrupt.

Chapter 3 Operational Description

Mode 0 Operation

Mode 0 operation provides simple input and output operation for each of the three ports. No handshaking is required, data is simply written to or read from a specific port.

Mode 0 Basic Functional Definitions:

- Three 8-bit ports
- Any port can be input or output
- Outputs are latched
- Inputs are not latched

I/O port Assignments

по роните		
Location	Write	Read
Base+0	Α0	A0
Base+1	В0	В0
Base+2	C0	C0
Base+3	Mode Register for A0, B0, C0	N/A
Base+4	A1	A1
Base+5	B1	B1
Base+6	C1	C1
Base+7	Mode Register for A1, B1, C1	N/A

8255 Data Registers

Base+0 Port A0 (read/write)

Dase+0 FOIL AU			(Teau/Wille)					
Bit	7	6	5	4	3	2	1	0
Value	PA07	PA06	PA05	PA04	PA03	PA02	PA01	PA00

Base+1 Port B0 (read/write)

<u> </u>	<u> </u>		1.0447	(1044, 11110)				
Bit	7	6	5	4	3	2	1	0
Value	PB07	PB06	PB05	PB04	PB03	PB02	PB01	PB00

Base+2 Port C0 (read/write)

Bit	7	6	5	4	3	2	1	0
Value	PC07	PC06	PC05	PC04	PC03	PC02	PC01	PC00

Base+4 Port A1 (read/write)

Bit	7	6	5	4	3	2	1	0
Value	PA17	PA16	PA15	PA14	PA13	PA12	PA11	PA01

Base+5 Port B1 (read/write)

Bit	7	6	5	4	3	2	1	0
Value	PB17	PB16	PB15	PB14	PB13	PB12	PB11	PB10

8255 Mode Registers

Base+4 Port A0, B0, C0 (write)

Bit	7	6	5	4	3	2	1	0
Value	1	0	0	PA0	PC0	0	PB0	PC0

PA0=0 → Port A0 is oupput

PA0=1 → Port A0 is input

PB0=0 \rightarrow Port B0 is oupput

PB0=1 \rightarrow Port B0 is input

PC0=0 → Port C0 is oupput

PC0=1 → Port C0 is input

Base+7 Port A1, B1, C1 (write)

Bit	7	6	5	4	3	2	1	0
Value	1	0	0	PA0	PC0	0	PB0	PC0

 $PA0=0 \rightarrow Port A0 is oupput$

PA0=1 → Port A0 is input

PB0=0 → Port B0 is oupput

PB0=1 \rightarrow Port B0 is input

 $PC0=0 \rightarrow Port C0 is oupput$

PC0=1 → Port C0 is input

Note:

After power-on or reset of the module the A0, B0, C0, A1, B1 and C1 ports are default set to input mode!

Chapter 4 I/O Port Pin Assignment

Group 1 (CN 10)

Pin	Description	Pin	Description
1	PC07	2	GND
3	PC06	4	GND
3 5	PC05	6	GND
7	PC04	8	GND
9	PC03	10	GND
11	PC02	12	GND
13	PC01	14	GND
15	PC00	16	GND
17	PB07	18	GND
19	PB06	20	GND
21	PB05	22	GND
23	PB04	24	GND
25	PB03	26	GND
27	PB02	28	GND
29	PB01	30	GND
31	PB00	32	GND
33	PA07	34	GND
35	PA06	36	GND
37	PA05	38	GND
39	PA04	40	GND
41	PA03	42	GND
43	PA02	44	GND
45	PA01	46	GND
47	PA00	48	GND
49	+5V	50	GND

Group 2 (CN 19)

Pin	Description	Pin	Description
1	PC17	2	GND
3	PC16	4	GND
3 5 7	PC15	6	GND
	PC14	8	GND
9	PC13	10	GND
11	PC12	12	GND
13	PC11	14	GND
15	PC10	16	GND
17	PB17	18	GND
19	PB16	20	GND
21	PB15	22	GND
23	PB14	24	GND
25	PB13	26	GND
27	PB12	28	GND
29	PB11	30	GND
31	PB10	32	GND
33	PA17	34	GND
35	PA16	36	GND
37	PA15	38	GND
39	PA14	40	GND
41	PA13	42	GND
43	PA12	44	GND
45	PA11	46	GND
47	PA10	48	GND
49	+5V	50	GND

Warranty

This product is warranted to be in good working order for a period of one year from the date of purchase. Should this product fail to be in good working orderat any time during this period, we will, at our option, replace or repair it at noadditional charge except as set forth in the following terms. This warranty doesnot apply to products damaged by misuse, modifications, accident or disaster. Vendor assumes no liability for any damages, lost profits, lost savings or anyother incidental or consequential damage resulting from the use, misuse of, orinability to use this product. Vendor will not be liable for any claim made by anyother related party. Return authorization must be obtained from the vendor before returned merchandise will be accepted. Authorization can be obtained by calling or faxing the vendor and requesting a Return Merchandise Authorization (RMA) number. Returned goods should always be accompanied by a clear problem description.