
ICPDAS I-8092F Software User Manual 1

2-axis Motion Control Module
User Manual

(I-8092F)

(Version 2.3)

Macro Function Library in C++ for

WinCon and I-8000 series PAC controllers

ICPDAS I-8092F Software User Manual 2

Warranty
All products manufactured by ICPDAS Inc. are warranted against defective

materials for a period of one year from the date of delivery to the original
purchaser.

Warning
ICPDAS Inc. assumes no liability for damages consequent to the use of this

product. ICPDAS Inc. reserves the right to change this manual at any time without
notice. The information furnished by ICPDAS Inc. is believed to be accurate and
reliable. However, no responsibility is assumed by ICPDAS Inc. for its use, or for
any infringements of patents or other rights of third parties resulting from its use.

Copyright
Copyright 1997-2005 by ICPDAS Inc., LTD. All rights reserved worldwide.

Trademark
The names used for identification only maybe registered trademarks of their

respective companies.

License
The user can use, modify and backup this software on a single machine. The

user may not reproduce, transfer or distribute this software, or any copy, in whole
or in part.

ICPDAS I-8092F Software User Manual 3

INDEX
1 PREFACE ..7

1.1 Introduction.. 7
1.2 Basic and Macro functions.. 7
1.3 Funciton description .. 8

2 BASIC SETTINGS..9

2.1 Code numbers for axes .. 9
2.2 Registration of Modules and getting the LIB version 9
2.3 Resetting Module ... 12
2.4 Pulse Output Mode Setting ... 12
2.5 Setting the Maximum Speed ... 13
2.6 Setting the Active Level of the Hardware Limit Switches 14
2.7 Setting the Motion Stop Method When Limit Switch Is Sensed 15
2.8 Setting the Trigger Level of the NHOME Sensor 15
2.9 Setting Trigger Level of the Home sensor ... 16
2.10 Setting and Clearing the Software Limits ... 16
2.11 Setting the Encoder Related Parameters ... 17
2.12 Setting the Servo Driver (ON/OFF) ... 18
2.13 Setting the SERVO ALARM Function .. 19
2.14 Setting the Active Level of the In-Position Signals 20
2.15 Setting the Time Constant of the Digital Filter................................... 20
2.16 Position Counter Variable Ring.. 22
2.17 Triangle prevention of fixed pulse driving .. 23
2.18 External Pulse Input.. 24

2.18.1 Handwheel (Manual Pulsar) Driving ..24
2.18.2 Fixed Pulse Driving Mode ..25
2.18.3 Continuous Pulse Driving Mode..26
2.18.4 Disabling the External Signal Input Functions...27

2.19 Configure hardware with pre-defined configuration file................... 28

3 READING AND SETTING THE REGISTERS.............29

3.1 Setting and Reading the Command Position (LP)................................ 29
3.2 Setting and Reading the Encoder Counter.. 30
3.3 Reading the Current Velocity ... 31
3.4 Reading the Current Acceleration.. 31
3.5 Reading the DI Status .. 32
3.6 Reading and Clearing the ERROR Status .. 34
3.7 Setting the general Dinigtal output .. 35

ICPDAS I-8092F Software User Manual 4

4 FRNET FUNCTIONS (FOR I8092F ONLY)..................36

4.1 Read FRnet DI Signals .. 36
4.2 Write data to FRnet DO .. 37

5 AUTO HOMING...38

5.1 Setting the Homing Speed ... 38
5.2 Using an Limit Switch as the HOME sensor... 39
5.3 Setting the Homing Mode.. 39
5.4 Starting the Homing Sequence ... 41
5.5 Waiting for the Homing sequence to be Completed 41

6 GENERAL MOTION CONTROL..................................42

6.1 Independent Axis Motion Control.. 42
6.1.1 Setting the Acceleration/Deceleration Mode ..42
6.1.2 Setting the Start Speed...44
6.1.3 Setting the Desired Speed..44
6.1.4 Setting the Acceleration ...45
6.1.5 Setting the Deceleration ...45
6.1.6 Setting the Acceleration Rate ..47
6.1.7 Setting the Value of the Remaining Offset Pulses ...48
6.1.8 Fixed Pulse Output ...49
6.1.9 Continuous Pulse Output...50

6.2 Interpolation Commands .. 51
6.2.1 Setting the Speed and Acc/Dec Mode for Interpolation51
6.2.2 Setting the Vector Starting Speed ...55
6.2.3 Setting the Vector Speed..55
6.2.4 Setting the Vector Acceleration ...56
6.2.5 Setting the Vector Deceleration Value...57
6.2.6 Setting the Vector Acceleration Rate ..58
6.2.7 Setting the Number of the Remaining Offset Pulses.....................................59
6.2.8 2-Axis Linear Interpolation Motion ..60
6.2.9 2-Axis Circular Interpolation Motion (an Arc)...61
6.2.10 2-Axis Circular Interpolation Motion ...63

6.3 Continuous Interpolation .. 65
6.3.1 2-Axis Rectangular Motion...65
6.3.2 2-Axis Continuous Linear Interpolation..66
6.3.3 Multi-Segment Continuous Interpolation (Using Array)68
6.3.4 2-Axis Ratio Motion...69
6.3.5 Mixed Linear and Circular 2-axis motions in Continuous Interpolation71

6.4 Set the Interrupt Factors... 74
6.4.1 Set the Interrupt Factors ..74
6.4.2 Interrupt Disabled ...76
6.4.3 Read the Interrupt Occurrence ..77

6.5 Other functions... 78

ICPDAS I-8092F Software User Manual 5

6.5.1 Holding the Driving Command ..78
6.5.2 Release the Holding Status, and Start the Driving...78
6.5.3 Waiting until the Motion Is Completed ..79
6.5.4 Stopping the Axes...81
6.5.5 Clear the Stop Status ..85
6.5.6 End of Interpolation ..85
6.5.7 Setting the COMPARE value ..86

APPENDIX A (I-8092F BASIC FUNCTIONS)87

A.1 i8092F Command Set.. 87
A.2 Pulse Output Command... 88

A.2.1 Signal Types..88
A.2.2 Fixed Pulse Driving ..90
A.2.3 Changing Output Pulse Numbers in Driving ...90
A.2.4 Offset Setting for Acceleration/Deceleration Driving....................................90
A.2.5 Continuous Drive Pulse Output ..92
A.2.6 Constant Speed Driving ...93

A.3 Profile Acceleration/Deceleration Planning.. 94
A.3.1 Trapezoidal Driving [Symmetric]...94
A.3.2 Trapezoidal Driving [Asymmetric] ..96
A.3.3 Triangle Prevention ..98
A.3.4 S-curve Acceleration / Deceleration [Symmetry]...99

A.4 Pulse Output Commands ... 103
A.4.1 2-Axes Interpolation ...103
A.4.2 Circular Interpolation ...104
A.4.3 Bit Pattern Interpolation...107
A.4.4 Continuous Interpolation...109

A.5 Automatic Home Search... 111
A.6 Interrupt Control .. 112

A.6.1 Interrupt for Independent axis...112
A.6.2 Interrupt for Interpolation ..112

A.7 I-8092F Function Library .. 113
A.7.1 Register management functions...114
A.7.2 Functions for Initial Setting ...121
A.7.3 Motion Status Management Functions...127
A.7.4 Basic Motion Command Functions ..134
A.7.5 Interpolation Functions..145
A.7.6 Automatic Home Search ..158
A.7.7 Interrupt Function...170
A.7.8 FRnet Related Functions ...177

A.8 i8092 Command Lists ... 179
A.8.1 Data Setting Commands ..179
A.8.2 Data Reading Commands ..179
A.8.3 Driving Commands...180
A.8.4 Interpolation Commands ...180
A.8.5 Other commands ..180

ICPDAS I-8092F Software User Manual 6

APPENDIX B: MCX312 REGISTERS............................181

B.1 Command Register: WR0 .. 181
B.2 Mode Register1: WR1... 182
B.3 Mode Register2: WR2... 184
B.4 Mode Register3: WR3... 186
B.5 Output Register: WR4.. 189
B.7 Data Register: WR6/WR7 .. 190
B.8 Main Status Register: RR0... 190
B.9 Status Register 1: RR1 .. 191
B.10 Status Register 2: RR2 .. 193
B.11 Status Register 3: RR3 .. 194
B.12 Input Register: RR4 / RR5... 195
B.13 Data-Read Register: RR6 / RR7 .. 195

ICPDAS I-8092F Software User Manual 7

1 Preface

1.1 Introduction

� This manual provides complete and detailed description of i8092F functions

for users to develop programs for their control of automatic equipments.
Many examples are included in this manual for reference to write efficient
application programs.

� This manual includes six chapters and two appendices. This chapter gives a

brief description of this manual. Chapter 2 to 6 is the explanations of macro
functions (MF). Appendices A and B are the descriptions of basic functions
(BF) and the registers of MCX312, respectively.

� The functions defined in DLL file are explained here. This DLL can be used on

different developing software platforms, such as eVC++, VB.net, and C#.net,
and different OS systems (MiniOS7 / WinCE).

1.2 Basic and Macro functions

� Basic functions are suitable for those who are familiar with the MCX312

motion chip. These functions can directly read/write the registers of motion
chip. However, users need to know more details about this motion chip.

� Macro functions provide a set of much easy-to-use functions that simplify the

programming for users. Some necessary settings, such as speed range and
deceleration point, are calculated inside those functions to ease the loading of
users on having to understand the motion chip. Some useful costumed
functions are provided for users to develop applications efficiently.

� If possible, do not mix these two groups of functions together. Some internal

parameters may be changed beyond users＇consideration.

ICPDAS I-8092F Software User Manual 8

1.3 Funciton description

All functions are listed in following form:

z Function_name (parameter1, parameter2, …)

Description: Explanation of this function.

Parameters: Definitions of the parameters and how to use them.

Return: The return value of this function.

Example: Simple example program in C++.

Remark: Comments.

ICPDAS I-8092F Software User Manual 9

2 Basic Settings

2.1 Code numbers for axes

The axis assignments follow the definitions listed below: X=1, Y=2. If X and Y
axes are assigned simultaneously, then the code number is 3. An assignment for
either single axis or multiple axes at the same time is possible. Available axis
code numbers are listed below. The type of the axis argument used in the
functions is defined as WORD.

Table 2-1 Axis assignments and their corresponding codes

Axis X Y XY
Code 0x1 0x2 0x3
Name AXIS_X AXIS_Y AXIS_XY

2.2 Registration of Modules and getting the LIB version

z BYTE i8092MF_REGISTRATION(BYTE cardNo, BYTE slot)

Description:

This function registers a module that is installed in slot number, slot, by
assigning a card number. Registration must be performed for each I-8092F
motion control module before other functions are called. After registration,
each module can be identified by its corresponding module number.

Parameters:
 cardNo: Module number

slot: Slot number
for I-8000: 0~7

 for WinCon-8000: 1~7

Return:
YES Normal
NO Abnormal

Example:
//================= for WinCon-8000 ==================

ICPDAS I-8092F Software User Manual 10

//set each module number the same as the slot number, respectively.
//(slot1 ~ slot7)
BYTE cardNo;
BYTE slot;
int Found = 0;
for (slot = 1; slot < 8; slot++)
{

cardNo = slot;
if (i8092MF_REGISTRATION(cardNo, slot) == YES)
{ //slot number begins from 1.

//if a module is found, then it is registered as its slot number.
i8092MF_RESET_CARD(cardNo);
Found++;

}
}
if (Found == 0)
{

//if Wincon cannot find any I-8092F module,
//please add codes to handle the exception here.
return;

}
//=================== for I-8000 ===================
//set the module number the same as the slot number, respectively.
//(slot1 ~ slot7)
BYTE cardNo;
BYTE slot;
int Found = 0;
for (slot = 0; slot < 8; slot++)
{

cardNo = slot + 1;
//slot number begins from 0, but module number begin from 1.

if (i8092MF_REGISTRATION(cardNo, slot) == YES)
{

//if a module is found, then it is registered by giving a number.
i8092MF_RESET_CARD(cardNo);
Found++;

}
}
if (Found == 0)
{

//if Wincon cannot find any I-8092F module,
//please add codes to handle the exception here.
return;

}

ICPDAS I-8092F Software User Manual 11

z WORD i8092MF_GET_VERSION(void)

Description:
 Read the version of current i8092 library.

Parameters:
 cardNo: Module number

Return:

Version code:
including information of the year and the month: 0x0000 ~ 0x9999

Example:
 WORD VER_No;

VER_No = i8092MF_GET_VERSION();
//Read the version code of i8092.dll

Remark:

If the return value is 0x0607
 06 : the year is 2006
 07: the month is July.

ICPDAS I-8092F Software User Manual 12

2.3 Resetting Module

z void i8092MF_RESET_CARD(BYTE cardNo)

Description:

This function resets module using a software command.

Parameters:
 cardNo: Module number

Return:

None

Example:
 i8092MF_RESET_CARD(1);

//Reset module 1.

2.4 Pulse Output Mode Setting

z void i8092MF_SET_PULSE_MODE(BYTE cardNo, WORD axis, BYTE nMode)

Description:

This function sets the pulse output mode as either CW/CCW or PULSE/DIR
for the assigned axes and their direction definition.

Parameters:

cardNo: Module number
axis: Axis or axes (Please refer to Table 2-1)
nMode: Assigned mode (Please refer to Table 2-2)

Return:
None

Example:
 i8092_SET_PULSE_MODE(1, AXIS_XYZ, 2);

//set the pulse mode of X, Y, and Z axes as mode 2
i8092_SET_PULSE_MODE(1, AXIS_U, 3);
//set the pulse mode of U axis as mode 3

ICPDAS I-8092F Software User Manual 13

Table 2-2 A List of pulse output modes

Pulse output signals mode
nPP nPM

0 CW (rising edge) CCW (rising edge) CW / CCW
1 CW (falling edge) CCW (falling edge)

2 PULSE (rising edge)
DIR

(LOW:+dir/ HIGH:-dir)

3 PULSE (falling edge)
DIR

(LOW:+dir/ HIGH:-dir)

4 PULSE (rising edge)
DIR

(HIGH:+dir/ LOW:-dir)

PULSE / DIR

5 PULSE (falling edge)
DIR

(HIGH:+dir/ LOW:-dir)

2.5 Setting the Maximum Speed

z void i8092MF_SET_MAX_V(BYTE cardNo, WORD axis, DWORD data)

Description:

This function sets the maximum rate for the output pulses (speed). A
larger value will cause a rougher resolution. For example, when the
maximum speed is set as 8000 PPS, the resolution is 1 PPS; when the
maximum speed is set as 16000 PPS, the resolution is 2 PPS; when
maximum speed is set as 80000 PPS, the resolution is 10 PPS, etc. The
maximum value is 4,000,000 PPS, which means the resolution of speed
will be 500 PPS. This function change the resolution of speed to reach the
desired maximum speed. Since the scale in hardware is changed, other
parameters will be influenced too, such as the starting speed, the
acceleration, and the jerk. It is recommended to set the maximum speed
value as a integral multiplier of 8000.

Parameters:

cardNo: Module number
axis: Axis or axes (Please refer to Table 2-1)
data: The assigned maximum speed of each axis when the

controller performs an interpolation motion. However, setting
the value of axis 1 is enough. For axis 1, the maximum value
is 4,000,000 PPS.

Return:
None

ICPDAS I-8092F Software User Manual 14

Example:
i8092MF_SET_MAX_V(1, AXIS_XY, 200000L);

 //The maximum speed for the X and Y axes of module 1 is 200KPPS.
//The resolution of the speed will be 200000/8000 = 25 PPS.

2.6 Setting the Active Level of the Hardware Limit Switches

z void i8092MF_SET_HLMT(BYTE cardNo, WORD axis, BYTE nFLEdge,

BYTE nRLEdge)

Description:

This function sets the active logic level of the hardware limit switch inputs.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nFLEdge: Active level setting for the forward limit switch.

 0 = low active; 1 = high active
nRLEdge: Active level setting for the reverse limit switch.
 0 = low active; 1 = high active

Return:
None

Example:
 i8092MF_SET_HLMT(1, AXIS_XY, 0, 0);

//set all the trigger levels as low-active for all limit switches
//on module 1.

ICPDAS I-8092F Software User Manual 15

2.7 Setting the Motion Stop Method When Limit Switch Is
Sensed

z void i8092MF_LIMITSTOP_MODE (BYTE cardNo, WORD axis, BYTE nMode)

Description:

This function sets the motion stop mode of the axes when the
corresponding limit switches are detected.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nMode: 0: stop immediately; 1: decelerating to stop

Return:
None

Example:

i8092MF_LIMITSTOP_MODE(1, AXIS_X, 0);
//set X axis to stop immediately if any limit switch on X axis is triggered.

2.8 Setting the Trigger Level of the NHOME Sensor

z void i8092MF_SET_NHOME(BYTE cardNo, WORD axis, BYTE nNHEdge)

Description:

This function sets the trigger level of the near home sensor (NHOME).

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nNHEdge: Active level setting for the near home sensor.

0 = low active; 1 = high active

Return:
None

Example:

i8092MF_SET_NHOME(1, AXIS_XY, 0);
//set the trigger level of NHOME of X and Y axes on module 1 to be active low.

ICPDAS I-8092F Software User Manual 16

2.9 Setting Trigger Level of the Home sensor

z void i8092MF_SET_HOME_EDGE(BYTE cardNo, WORD axis, BYTE nHEdge)

Description:

This function sets the trigger level of the home sensor (HOME).

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nHEdge: Active level setting for the home sensor.
 0 = low active; 1 = high active

Return:
None

Example:
 i8092MF_SET_HOME_EDGE(1, AXIS_XY, 1);

//set the trigger level as high active for all home sensors on module 1.

2.10 Setting and Clearing the Software Limits

z void i8092MF_SET_SLMT(BYTE cardNo, WORD axis, long dwFL, long dwRL,

BYTE nType)
Description:

This function sets the software limits.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
dwFL: Value of the forward software limit

(-2,147,483,648 ~ +2,147,483,647)
dwRL: Value of the reverse software limit

(-2,147,483,648 ~ +2,147,483,647)
nType: Position counter to be compared:

0 = logical position counter (LP), i.e., the command position
1 = encoder position counter (EP), i.e., the real position

Return:
None

ICPDAS I-8092F Software User Manual 17

Example:
 i8092MF_SET_SLMT(1, AXIS_XY, 20000, -3000, 0);

//set the forward software limit as 20000 and the reverse
//software limit as -3000 for all axes on module 1.

z void i8092MF_CLEAR_SLMT(BYTE cardNo, WORD axis)

Description:

This function clears the software limits.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
None

Example:
 i8092MF_CLEAR_SLMT(1, AXIS_XY);

//clear the software limits for all axes on module 1.

2.11 Setting the Encoder Related Parameters

z void i8092MF_SET_ENCODER(BYTE cardNo, WORD axis, BYTE nMode,

BYTE nDivision, BYTE nZEdge)

Description:
This function sets the encoder input related parameters.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nMode: Encoder input type: 0 = A quad B; 1 = up/down
nDivision: Division setting for A quad B input signals:

0 = 1/1
1 = 1/2
2 = 1/4

nZEdge: Sets the trigger level for the Z phase
0 = low active; 1 = high active

ICPDAS I-8092F Software User Manual 18

Return:
None

Example:
 i8092MF_SET_ENCODER(1, AXIS_XY, 0, 0, 0);

//set the encoder input type as A quad B; the division is 1;
//and the Z phase is low active.

z void i8092MF_SET_EN_DIR(BYTE cardNo, WORD axis, BYTE nDir)

Description:

This function sets the encoder input direction.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nDir: Encoder input direction: 0=positive dir; 1= negative dir

Return:
None

Example:
 i8092MF_SET_EN_DIR(1, AXIS_XY, 0);

//set the encoder input direction to positive direction;

2.12 Setting the Servo Driver (ON/OFF)

z void i8092_SERVO_ON(BYTE cardNo, WORD axis)

Description:

This function outputs a DO signal (ENABLE) to enable the motor driver.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
None

Example:
 i8092_SERVO_ON(1, AXIS_XY);

//enables all drivers on module 1.

ICPDAS I-8092F Software User Manual 19

z void i8092_SERVO_OFF(BYTE cardNo, WORD axis)

Description:

This function outputs a DO signal (ENABLE) to disable the motor driver.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
None

Example:
 i8092_SERVO_OFF(1, AXIS_XY);

//disables all drivers on module 1.

2.13 Setting the SERVO ALARM Function

z void i8092MF_SET_ALARM(BYTE cardNo, WORD axis, BYTE nMode,

BYTE nAEdge)

Description:
 This function sets the ALARM input signal related parameters.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nMode: Mode: 0 = disable ALARM function;

1 = enable ALARM function
nAEdge: Sets the trigger level

0 = low active; 1 = high active

Return:
None

Example:
 i8092MF_SET_ALARM(1, AXIS_XY, 1, 0);

//enable the ALARM for X and Y axes on module 1 and set them
//as low-active.

ICPDAS I-8092F Software User Manual 20

2.14 Setting the Active Level of the In-Position Signals

z void i8092MF_SET_INPOS(BYTE cardNo, WORD axis, BYTE nMode,

BYTE nIEdge)

Description:
 This function sets the INPOS input signal related parameters.

Note: Sometimes, this signal is used to connect the SERVO READY input
signal. Users should take care of what signal the daughter board is
wired.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nMode: Mode: 0 = disable INPOS input;

1 = enable INPOS input
nlEdge: Set the trigger level

0 = low active; 1 = high active
Return:

None

Example:

i8092MF_SET_INPOS(1, AXIS_X, 1, 0);
//enable the INPOS function of the X axis on module 1 and set it to be low-active.

Note: Please refer to the example shown in Fig. 2.12 for wiring of the general DI
input.

2.15 Setting the Time Constant of the Digital Filter

z void i8092MF_SET_FILTER(BYTE cardNo, WORD axis, WORD FEn, WORD FLn)
Description:
 This function selects the axes and sets the time constant for digital filters of
the input signals.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
FEn: Enabled filters. The sum of the code numbers (0~31) are used

 to select input signals. Please refer to the following table.

ICPDAS I-8092F Software User Manual 21

Code number Enabling filters
1 EMG, nLMTP, nLMTM, nIN0, nIN1
2 nIN2
4 nINPOS, nALARM
8 nEXPP, nEXPM, EXPLSN
16 nIN3

FLn: Sets the filter time constant (0~7) as follows.

Code Removable max. noise width Input signal delay time
0 1.75 μ SEC 2 μ SEC
1 224 μ SEC 256 μ SEC
2 448 μ SEC 512 μ SEC
3 896 μ SEC 1.024mSEC
4 1.792mSEC 2.048mSEC
5 3.584mSEC 4.096mSEC
6 7.168mSEC 8.192mSEC
7 14.336mSEC 16.384mSEC

Return:

None

Example:
 i8092MF_SET_FILTER(1, AXIS_XY, 21, 3);

//set the filter time constants of X and Y axes as 1.024mSEC.
//These filters include EMG, nLMTP, nLMTM, nIN0, nIN1, nINPOS, nALARM,
//and nIN3.
//(21 = 1+4+16) 1: EMG + nLMP + nLMPM + nIN0 + nIN1;
// 4: nINPOS + nALARM;
// 16: nIN3.

Note: The default wiring design is: nIN0 is connected to the NEAR HOME
(NHOME) sensors; nIN1 is connected to the HOME sensors; and nIN2 is
connected to the index of Encoder input (Z phase).

ICPDAS I-8092F Software User Manual 22

2.16 Position Counter Variable Ring

z void i8092MF_VRING_ENABLE(BYTE cardNo, WORD axis, DWORD nVRing)

Description:
 This function enables the linear counter of the assigned axes as variable ring
counters.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nVRing: Maximum value of the ring counter

(-2,147,483,648 ~ +2,147,483,647)

Return:
None

Example:

i8092MF_ VRING_ENABLE(1, AXIS_X, 9999);
//set the X axis of module 1 to be a ring counter. The encoder
//values will be 0 to 9999.

Max. ring encoder value = 9999

The encoder value is 0 to 9999. When the
counter value reach 9999, an adding pulse
will cause the counter to reset to 0. When the
counter value is 0, a lessening pulse will let
the counter set to 9999.

Note: 1. This function will set the LP and EP simultaneously.

 2. If this function is enabled, the software limit function cannot be used.

z void i8092MF_VRING_DISABLE(BYTE cardNo, WORD axis)

Description:

This function disables the variable ring counter function.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
None

ICPDAS I-8092F Software User Manual 23

Example:
i8092MF_ VRING_DISABLE(1, AXIS_X);
//disable the ring counter function for the X axis
//on module 1.

2.17 Triangle prevention of fixed pulse driving

z void i8092MF_AVTRI_ENABLE (BYTE cardNo, WORD axis)

Description:
 This function prevents a triangle form in linear acceleration (T-curve) fixed
pulse driving even if the number of output pulses is low.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
None

Example:

i8092MF_ AVTRI_ENABLE(1, AXIS_X);
//set the X axis of module 1 not to generate a triangle form in its speed profile.

z void i8092MF_AVTRI_DISABLE (BYTE cardNo, WORD axis)

Description:
 This function disable the function that prevents a triangle form in linear
acceleration fixed pulse driving.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
None

Example:

i8092MF_ AVTRI_DISABLE(1, AXIS_X);
//enable the X axis of module 1 to generate a triangle form in its
//speed profile if the pulse number for output is too low.

ICPDAS I-8092F Software User Manual 24

2.18 External Pulse Input

2.18.1 Handwheel (Manual Pulsar) Driving

z void i8092MF_EXD_MP(BYTE cardNo, WORD axis, long data)

Description:

This function outputs pulses according to the input pulses from a handwheel.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1.)
 The axis can be either X and Y
data: Gain (a multiplier)

Return:
None

Example:

i8092MF_EXD_MP(1, AXIS_X, 1);
 //Each time the handwheel inputs a pulse to the X axis

//on module 1, the controller will output 1 pulses to the motor driver.

i8092MF_EXD_MP(1, AXIS_X, 2);
 //Each time the handwheel inputs a pulse to the X axis

//on module 1, the controller will output 2 pulses to the motor driver.

ICPDAS I-8092F Software User Manual 25

2.18.2 Fixed Pulse Driving Mode

z void i8092MF_EXD_FP(BYTE cardNo, WORD axis, long data)

Description:
 This function outputs fixed pulses according to the trigger input (the falling
edge of the nEXP+ signal) from a handwheel.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1.)
The axis can be either X and Y

data: Number of fixed pulses.

Return:
None

Example:

i8092MF_EXD_FP(1, AXIS_X, 5);
 //Each time the controller detects a falling edge of an XEXP+

//signal, it will output 5 pulses to the X axis.

Example of fixed pulse driving using an external signal

ICPDAS I-8092F Software User Manual 26

2.18.3 Continuous Pulse Driving Mode

z void i8092MF_EXD_CP(BYTE cardNo, WORD axis, long data)

Description:
 The controller will continuously output pulses in positive direction if the
falling edge of nEXP+ signal from a handwheel is detected. Conversely, it will
continuously output pulses in negative direction if the falling edge of nEXP- signal
is detected.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1.)
 The axis can be either X and Y
data: Pulse output speed in PPS

Return:
None

Example:

i8092MF_EXD_CP(1, AXIS_X, 20);
 //Each time the controller detects a falling edge of an XEXP+

//signal, it will continuously drive X axis at the speed of 20 PPS.

Continuous driving using an external signal

ICPDAS I-8092F Software User Manual 27

2.18.4 Disabling the External Signal Input Functions

z void i8092MF_EXD_DISABLE(BYTE cardNo, WORD axis)

Description:
 This function turns off the external input driving control functions.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1.)
 The axis can be either X and Y

Return:
None

Example:

i8092MF_EXD_DISABLE(1, AXIS_X);
 //disable the external input driving control function

//of X axis on module 1

ICPDAS I-8092F Software User Manual 28

2.19 Configure hardware with pre-defined configuration
file

z short i8092MF_ LOAD_CONFIG (BYTE cardNo)

Description:
 This function loads the pre-defined configuration file and set the target I8092
module automatically. The configuration file is generated by the PACEzGo.

Parameters:
 cardNo: Module number

Return:

0: successfully
-1: cannot open the pre-defined configuration file.

Example:

i8092MF_ LOAD_CONFIG (1);
//load the configuration file and configure the module 1.

ICPDAS I-8092F Software User Manual 29

3 Reading and Setting the Registers

3.1 Setting and Reading the Command Position (LP)

z void i8092MF_SET_LP(BYTE cardNo, WORD axis, long wdata)

Description:

This function sets the command position counter value (logical position
counter, LP).

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
wdata: Position command

(-2,147,483,648 ~ +2,147,483,647)

Return:
None

Example:

i8092MF_SET_LP(1, AXIS_XY, 0);
//Set the LP for the X, Y, Z, and U axes of module 1 as 0,
//which means that all LP counters on module 1 will be cleared.

z long i8092MF_GET_LP(BYTE cardNo, WORD axis)

Description:

This function reads the command position counter value (logical position
counter, LP).

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
The axis can be either X and Y

Return:

The current LP value (-2,147,483,648 ~ +2,147,483,647)

Example:
 long X_LP;

X_LP = i8092MF_GET_LP(1, AXIS_X);
//Reads the LP value of the X axis on module 1.

ICPDAS I-8092F Software User Manual 30

3.2 Setting and Reading the Encoder Counter

z void i8092MF_SET_EP(BYTE cardNo, WORD axis, long wdata)

Description:

This function sets the encoder position counter value (real position counter, or
EP).

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
wdata: Position command

(-2,147,483,648 ~ +2,147,483,647)

Return:
None

Example:

i8092MF_SET_EP(1, AXIS_XY, 0);
//Set the EP for the X, Y, Z, and U axes of module 1 as 0.
//This command clears all EP counters on module 1.

z long i8092MF_GET_EP(BYTE cardNo, WORD axis)

Description:

This function reads the encoder position counter value (EP).

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
 The axis can be either X and Y

Return:
Current EP value (-2,147,483,648 ~ +2,147,483,647)

Example:
 long X_EP;

X_EP = i8092MF_GET_EP(1, AXIS_X);
//reads the encoder value (EP) of the X axis on module 1.

ICPDAS I-8092F Software User Manual 31

3.3 Reading the Current Velocity

z DWORD i8092MF_GET_CV(BYTE cardNo, WORD axis)

Description:

This function reads the current velocity value.

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
 The axis can be either X and Y

Return:

Current speed (in PPS)

Example:

DWORD dwdata;
dwdata = i8092MF_GET_CV(1, AXIS_X);
//reads the current velocity of the X axis on module 1.

3.4 Reading the Current Acceleration

z DWORD i8092MF_GET_CA(BYTE cardNo, WORD axis)

Description:

This function reads the current acceleration value.

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
 The axis can be either X and Y

Return:
Current acceleration (in PPS/Sec)

Example:

DWORD dwdata;
dwdata = i8092MF_GET_CA(1, AXIS_X);
//reads the current acceleration value of the X axis on module 1.

ICPDAS I-8092F Software User Manual 32

3.5 Reading the DI Status

z BYTE i8092MF_GET_DI(BYTE cardNo, WORD axis, WORD nType)

Description:

This function reads the digital input (DI) status.

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
 The axis can be either X and Y
nType:

0 Æ DRIVING (Check whether the axis is driving or not.)
1 Æ LIMIT+ (Check whether the limit+ is engaged or not.)
2 Æ LIMIT- (Check whether the limit- is engaged or not.)
3 Æ EMERGENCY (Check whether EMG signal is on or not.)
4 Æ ALARM (Check the ALARM input signal.)
5 Æ HOME (Check the HOME input signal)
6 Æ NHOME (Check the Near HOME input signal)
7 Æ IN3 (Check the IN3 input signal)
8 Æ INPOS (Check the INPOS input signal)
9 Æ INDEX (Check the encoder Z-phase input signal)

Return:
YES on
NO off

Example:

if (i8092MF_GET_DI(1, AXIS_X, 1) == YES)
{

 //get the status of limit+ sensor of X axis on module 1
}

z WORD i8092MF_GET_DI_ALL(BYTE cardNo, WORD axis)

Description:

This function reads All digital inputs (DI) status.

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
 The axis can be either X and Y

ICPDAS I-8092F Software User Manual 33

Return: a 16 bits value (0=Low,1=High)
 bit 0 NHOME signal
 bit 1 HOME signal
 bit 2 Z-PHASE signal
 bit 3 EMG signal(Only AXIS_X)
 bit 4 EXP+ signal
 bit 5 EXP- signal
 bit 6 READY(INPOS) signal
 bit 7 ALARM signal
 bit 8 N/A
 bit 9 N/A
 bit 10 N/A
 bit 11 IN3 signal
 bit 12 N/A

bit 13 N/A
bit 14 LMT+ signal
bit 15 LMT- signal

Example:
 WORD DI_Flag=i8092MF_GET_DI_ALL(1, AXIS_X) ;

 // get all status of module 1。

ICPDAS I-8092F Software User Manual 34

3.6 Reading and Clearing the ERROR Status

z BYTE i8092MF_GET_ERROR(BYTE cardNo)

Description:

This function checks whether an error occurs or not.

Parameters:
 cardNo: Module number

Return:
 YES: Some errors happened.

Please use i8092MF_GET_ERROR_CODE () to get more
information. If GET_ERROR_CODE =256, it means that the
motion stop was due to the “STOP” command, not because
an error happened. Please refer to 6.5.5 and following
example to clear ERROR.

NO: No error.

EXAMPLE:
 If (i8092MF_GET_ERROR(1) == YES)

{
 //read module 1 and ERROR is found

WORD ErrorCode_X = i8092MF_GET_ERROR_CODE(1, AXIS_X);
WORD ErrorCode_Y = i8092MF_GET_ERROR_CODE(1, AXIS_Y);

 if ((ErrorCode_X || ErrorCode_Y) == 256)
 {

//It means that motion was stopped due to the stop command was
issued, not because any error happened. Please take some actions to
clear the malfunction; then clear the STOP status.

 i8092MF_CLEAR_STOP(1);
 }

}

z WORD i8092MF_GET_ERROR_CODE(BYTE cardNo, WORD axis)

Description:

This function reads the ERROR status.

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
 The axis can be either X and Y

ICPDAS I-8092F Software User Manual 35

Return:
 0 Æ no error

For non-zero return values, please refer to the following table. If there are
not only one errors, the return value becomes the sum of these error code
values.
For example, a return code 48 means that ALARM and EMGERENCY
occurs at the same time.

Error Code Cause of stop Explanation

1 SOFT LIMIT+ Occurs when the forward software limit is asserted
2 SOFT LIMIT- Occurs when the reverse software limit is asserted
4 LIMIT+ Occurs when the forward hardware limit is asserted
8 LIMIT- Occurs when the reverse hardware limit is asserted

16 ALARM Occurs when the ALARM is asserted
32 EMERGENCY Occurs when the EMG is asserted
64 Reserved Reserved

128 HOME Occurs when both Z phase and HOME are asserted
256 refer to 6.5.4 Occurs when the EMG(software) is asserted

Example:

if (i8092MF_GET_ ERROR_CODE(1, AXIS_X) & 10)
{
 //Check if either the software limit or hardware limit (2+8)

//in the reverse direction is asserted.
}

3.7 Setting the general Dinigtal output
z void i8092MF_SET_OUT0(BYTE cardNo, WORD axis, WORD nLevel)
Description:

 This Function sets the Digital Output status.

Paramenter:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
 The axis can be either X and Y
nLevel: DO output: 0=OFF,1=ON

Return: no

Example:

i8092MF_SET_OUT0 (1, AXIS_XY, 1);
//set the DO of X and Y to ON。

ICPDAS I-8092F Software User Manual 36

4 FRnet Functions (for i8092F only)

4.1 Read FRnet DI Signals

z WORD i8092MF_FRNET_IN(BYTE cardNo, WORD wRA)

Description:

This function reads the FRnet digital input signals. RA means the Receiving
Address which can be one of the legal group number of FRnet. One group
comprises 16 bits data. Therefore, total 128 DI can be defined for one FRnet
interface.

Parameters:
 cardNo: Module number

wRA: Group number, range 8~15
Note: 0~7 are used for digital outputs

Return:
 WORD 16-bit DI data.

Example:
 WORD IN_Data;

IN_Data = i8092MF_FRNET_IN(1, 8);
 //Read the 16-bit DI which is on module 1 and the group number is 8.

ICPDAS I-8092F Software User Manual 37

4.2 Write data to FRnet DO

z void i8092MF_FRNET_OUT(BYTE cardNo, WORD wSA, WORD data)

Description:

This function write data to the FRnet digital output. SA means the Sending
Address which can be one of the legal group number of FRnet. One group
comprises 16 bits data. Therefore, total 128 DO can be defined for one FRnet
interface.

Parameters:
 cardNo: Module number

wSA: Group number, range 0~7
Note: 8~15 are used by digital inputs

 data: 16-bit data

Return:
 None

Example:
 i8092MF_FRNET_OUT(1, 0,0xffff);
 //Write 0xffff to the 16-bit DO which is on module 1 and the group number is 0.

ICPDAS I-8092F Software User Manual 38

5 Auto Homing

The I-8092F module provides an automatic homing function. After setting the
appropriate parameters, the assigned axes are able to perform automatic homing.
Settings are required to be made in four steps for performing the automatic HOME
search:

z Search for the near home sensor (NHOME) at a normal speed (V).
z Search for the HOME sensor at low speed (HV).
z Search for the Encoder Z-phase (index) at low speed (HV).
z Move a specified number of offset pulses to the predefined origin point at
normal speed (V).

Some steps can be omitted. A detailed description of the related functions is
provided in the following sections. Fully automated homing can reduce both
programming time and CPU processing time.

5.1 Setting the Homing Speed

z void i8092MF_SET_HV(BYTE cardNo, WORD axis, DWORD data)

Description:

This function sets the homing speed.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
data: Homing speed (in PPS)

Return:
None

EXAMPLE:
 i8092MF_ SET_HV(1, AXIS_X, 500);

//set the homing speed of the X axis on module 1 to 500 PPS.

ICPDAS I-8092F Software User Manual 39

5.2 Using an Limit Switch as the HOME sensor

z void i8092MF_HOME _LIMIT(BYTE cardNo, WORD axis, WORD nType)

Description:

This function sets the Limit Switch to be used as the HOME sensor.

Parameters:
 cardNo: Module number

axis: Axis axes (Please refer to Table 2-1)
nType: 0: Does not use the LIMIT SWITCH as the HOME sensor;

1: Use the LIMIT SWITCH as the HOME sensor

Return:
None

EXAMPLE:
 i8092MF_ HOME_LIMIT(1, AXIS_X, 0);

//Do not use the Limit Switch as the HOME sensor.

5.3 Setting the Homing Mode

z void i8092MF_SET_HOME_MODE(BYTE cardNo, WORD axis, WORD nStep1,

WORD nStep2, WORD nStep3, WORD nStep4 , long data)

Description:
 This function sets the homing method and other related parameters.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nStep1:

0: Step 1 is not executed
1: Moves in a positive direction
2: Moves in a negative direction

nStep2:
0: Step 2 is not executed
1: Moves in a positive direction
2: Moves in a negative direction

nStep3:
0: Step 3 is not executed
1: Moves in a positive direction

ICPDAS I-8092F Software User Manual 40

2: Moves in a negative direction
nStep4:

0: Step 4 is not executed
1: Moves in a positive direction
2: Moves in a negative direction

data: Offset value (0 ~ 2,147,483,647)

The Four Steps Required for Automatic Homing

Return:

None

Example:
 //Use the following functions to set the homing mode of the X axis.

i8092MF_SET_V(1, 0x1, 20000);
 i8092MF_SET_HV(1, 0x1, 500);

i8092MF_SET_HOME_MODE(1, 0x1, 2, 2, 1, 1, 3500);
i8092MF_HOME_START(1, 0x1); //start auto-homing.
i8092MF_WAIT_HOME(1, 0x1); //wait until homing is completed.

 Step Input Signal Direction Speed
1 Near HOME (IN0) is active - 20000 PPS (V)
2 HOME (IN1) is active - 500 PPS (HV)
3 Z-phase (IN2) is active + 500 PPS (HV)

4 No sensor is required. Move 3500
pulses along the X axis. + 20000 PPS (V)

Step Action Speed Sensor
1 Searching for the Near Home sensor V NHOME (IN0)
2 Searching for the HOME sensor HV HOME (IN1)

3 Searching for the encoder Z-phase
signal HV Z-phase (IN2)

4 Moves to the specified position V

ICPDAS I-8092F Software User Manual 41

5.4 Starting the Homing Sequence

z void i8092MF_HOME _START(BYTE cardNo, WORD axis)

Description:

This function starts the home search of assigned axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
None

Example:
 i8092MF_ HOME_START(1, AXIS_X);

//start the automatic homing sequence for the X axis on module 1.

5.5 Waiting for the Homing sequence to be Completed

z BYTE i8092MF _HOME_WAIT(BYTE cardNo, WORD axis)

Description:

This function assigns commands to be performed while waiting for the
automatic home search of all assigned axes to be completed.

Parameters:
 cardNo: Module number

axis: Axis axes (Please refer to Table 2-1)

Return:
YES The Homing sequence has been completed.
NO The Homing sequence is not complete.

Example:

if (i8092MF_HOME_WAIT(1, AXIS_X) == NO)
{

 //perform some actions here if the X axis on module 1 has not completed
//its homing sequence.

 }

ICPDAS I-8092F Software User Manual 42

6 General Motion Control

6.1 Independent Axis Motion Control

z The motion of each axis can be started independently.
z Two axes are moving at the same time.
z Each axis is moving independently.
z Each axis can be commanded to change motion, such as changing the number

of pulses or the speed.
z Each axis can be commanded to stop slowly or suddenly to meet the individual

requirements.

6.1.1 Setting the Acceleration/Deceleration Mode

z void i8092MF_NORMAL_SPEED(BYTE cardNo, WORD axis , WORD nMode)

Description:

The function sets the speed mode.

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1)
nMode:

0 Æ Symmetric T-curve (Please set SV, V, A, and AO)
1 Æ Symmetric S-curve (Please set SV, V, K, and AO)
2 Æ Asymmetric T-curve (Please set SV, V, A, D, and AO)

Return:

None

Example:

BYTE cardNo=1; //select module 1.
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 20000);
//set the max. speed of XY axes to 20K PPS.

//==
i8092MF_NORMAL_SPEED(cardNo, AXIS_XY, 0);
//use a symmetric T-curve for all axes on module 1.
i8092MF_SET_V(cardNo, AXIS_XY, 2000);
//set the speed of all axes on module 1 to 2000 PPS.
i8092MF_SET_A(cardNo, AXIS_XY,1000);

ICPDAS I-8092F Software User Manual 43

//set the acceleration of all axes on module 1 to 1000 PPS/Sec.
i8092MF_SET_SV(cardNo, AXIS_XY, 2000);
//set the start speed of all axes on module 1 to 2000 PPS.
i8092MF_SET_AO(cardNo, AXIS_XY, 9);
//set the number of remaining offset pulses for all axes to 9 pulses.
i8092MF_FIXED_MOVE(cardNo, AXIS_XY, 10000);
//move all axes on module 1 for 10000 pulses.

//==
i8092MF_NORMAL_SPEED(cardNo, AXIS_XY,1);
//use a symmetric S-curve for all axes on module 1.
i8092MF_SET_V(cardNo, AXIS_XY, 2000);
//set the speed of all axes on module 1 to 2000 PPS.
i8092MF_SET_K(cardNo, AXIS_XY, 50);
//set the acceleration rate of all axes on module 1 to 500 PPS/Sec^2.
i8092MF_SET_SV(cardNo, AXIS_XY, 200);
//set the start speed of all axes on module 1 to 200 PPS.
i8092MF_SET_AO(cardNo, AXIS_XY, 9);
//set the number of remaining offset pulses to 9 pulses for all axes.
i8092MF_FIXED_MOVE(cardNo, AXIS_XY, -10000);
//move all axes on module 1 for 10000 pulses in reverse direction.
//==
i8092MF_NORMAL_SPEED(cardNo, AXIS_XY,2);
//use an asymmetric T-curve for all axes on module 1.
i8092MF_SET_V(cardNo, AXIS_XY, 2000);
//set the speed of all axes on module 1 to 2000 PPS.
i8092MF_SET_A(cardNo, AXIS_XY,1000);
//set the acceleration of all axes on module 1 to 1000 PPS/Sec.
i8092MF_SET_D(cardNo, AXIS_XY, 500);
//set the deceleration of all axes on module 1 to 500 PPS.
i8092MF_SET_SV(cardNo, AXIS_XY, 200);
//set the start speed of all axes on module 1 to 200 PPS.
i8092MF_SET_AO(cardNo, AXIS_XY, 9);
//set the number of remaining offset pulses to 9 pulses for all axes.
i8092MF_FIXED_MOVE(cardNo, axis, 10000);
//move all axes on module 1 for 10000 pulses.

Note: Relevant parameters must be set to achieve the desired motion.

ICPDAS I-8092F Software User Manual 44

6.1.2 Setting the Start Speed

z void i8092MF_SET_SV(BYTE cardNo, WORD axis, DWORD data)

Description:

This function sets the start speed for the assigned axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
data: The range is the same as for speed, and must not be zero or

larger than the maximum speed. The maximum value is
4,000,000 PPS. For interpolation, set the speed value for axis1
is enough.

Return:

None

Example:

i8092MF_SET_SV(1, AXIS_X, 1000);
//set the starting speed for the X axis on module 1 to 1000 PPS.

6.1.3 Setting the Desired Speed

z void i8092MF_SET_V(BYTE cardNo, WORD axis, DWORD data)

Description:

This function sets the desired speed for the assigned axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
data: The range is the same as for speed, and must not be zero or

larger than the maximum speed. The maximum value is
4,000,000 PPS. For interpolation, set the speed value for axis1
is enough.

Return:
None

Example:

i8092MF_SET_V(1, AXIS_X, 120000);
//set the speed for the X axis on module 1 to 120000 PPS.

ICPDAS I-8092F Software User Manual 45

6.1.4 Setting the Acceleration

z void i8092MF_SET_A(BYTE cardNo, WORD axis, DWORD data)

Description:

This function sets the acceleration value for the assigned axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
data: The acceleration value. The units are PPS/Sec. This value is

related to the maximum speed value defined by
i8092MF_SET_MAX_V() function. The maximum available
acceleration value is MAX_V * 125. The minimum acceleration
value is MAX_V ÷ 64, and all other acceleration values are
the integral multipliers of this value. The practical value for
application depends on the capability of the motor drive and
motor.

Return:

None

Example:

i8092MF_SET_MAX_V(1, AXIS_X, 20000);
 //set the maximum speed value of the X axis as 20,000 PPS.
 //therefore, do not set any acceleration value that is larger than

//20,000*125 PPS/sec. And 20,000 *125 = 2,500,000.
i8092MF_SET_A(1, AXIS_X, 100000);
//set the acceleration value of the X axis on module 1 to 100K PPS/Sec.

6.1.5 Setting the Deceleration

z void i8092MF_SET_D(BYTE cardNo, WORD axis, DWORD data)

Description:

This function sets the deceleration value for the assigned axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

ICPDAS I-8092F Software User Manual 46

data: The deceleration value. The units are PPS/Sec. This value is
related to the maximum speed value defined by
i8092MF_SET_MAX_V() function. The maximum available
deceleration value is MAX_V * 125. The minimum deceleration
value is MAX_V ÷ 64, and all other deceleration values are
the integral multipliers of this value. The practical value for
application depends on the capability of the motor drive and
motor.

Return:

None

Example:

i8092MF_SET_MAX_V(1, AXIS_X, 20000);
 //set the maximum speed value of the X axis as 20,000 PPS.
 //therefore, do not set any deceleration value that is larger than

//20,000*125 PPS/sec. And 20,000 *125 = 2,500,000.
i8092MF_SET_D(1, AXIS_X, 100000);
//set the deceleration value of the X axis on module 1 to 100K PPS/Sec.

ICPDAS I-8092F Software User Manual 47

6.1.6 Setting the Acceleration Rate

z void i8092MF_SET_K(BYTE cardNo, WORD axis, DWORD data)

Description:

The function sets the acceleration rate (i.e., Jerk) value for the assigned axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
data: The acceleration rate (jerk) value. The units are 2PPS/Sec . This

value is related to the maximum speed value defined by
i8092MF_SET_MAX_V() function. The maximum available
acceleration rate value is MAX_V * 781.25. The minimum
acceleration value is MAX_V * 0.0119211, and all other
acceleration values are the integral multipliers of this value.
The practical value for application depends on the capability
of the motor drive and motor. Note: since the DWORD can not
represent the maximum value; therefore, this value is given by
dividing the desired value by 10.

Return:

None

Example:

i8092MF_SET_MAX_V(1, AXIS_X, 20000);
 //set the maximum speed value of the X axis as 20,000 PPS.
 //therefore, do not set any jerk value that is larger than

//20,000*781.25 PPS/sec^2. And 20,000 *781.25 = 15,625,000.
i8092MF_SET_K(1, AXIS_X, 1000);
//set the acceleration rate value of the X axis on module 1 to
//1,000*10 (= 10,000) PPS/Sec^2.

ICPDAS I-8092F Software User Manual 48

6.1.7 Setting the Value of the Remaining Offset Pulses

z void i8092MF_SET_AO(BYTE cardNo, WORD axis, short int data)
Description:

This function sets the number of remaining offset pulses for the assigned axes.
Please refer to the figure below for a definition of the remaining offset pulse value.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
data: The number of remaining offset pulses. (-32,768 ~ +32,767)

Return:

None

Example:

i8092MF_SET_AO(1, AXIS_X, 200);
//set the number of remaining offset pulses for the X axis on
//module 1 to 200 pulses.

ICPDAS I-8092F Software User Manual 49

6.1.8 Fixed Pulse Output

z BYTE i8092MF_FIXED_MOVE(BYTE cardNo, WORD axis, long data)
Description:

Command a point-to-point motion for several independent axes.

Parameters:
 cardNo: Module number

axis: Axis (Please refer to Table 2-1.)
 The axis can be either X and Y
data: Pulses (-268,435,455 ~ + 268,435,455)

Return:
YES Some errors happen. Use i8092MF_GET_ERROR_CODE () to
 identify the errors.
NO No error.

Example:

BYTE cardNo=1; //select module 1
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 20000);
//set the max. velocity of all axes on module 1 to be 20K PPS
i8092MF_NORMAL_SPEED(cardNo, AXIS_XY, 0);
//set the speed profile of all axes on module 1 to be symmetric T-curve
i8092MF_SET_V(cardNo, AXIS_XY, 2000);
//set the speed of all axes on module 1 to be 2000 PPS
i8092MF_SET_A(cardNo, AXIS_XY,1000);
//set the acceleration value of all axes on module 1 to be 1000 PPS/S
i8092MF_SET_SV(cardNo, AXIS_XY, 2000);
//set the start velocity of all axes on module 1 to be 2000 PPS
i8092MF_SET_AO(cardNo, AXIS_XY, 9);
//set the remaining offset pulses to be 9 PPS
i8092MF_FIXED_MOVE(cardNo, AXIS_XY, 10000);
// move 10000 Pulses for each axis on module 1

ICPDAS I-8092F Software User Manual 50

6.1.9 Continuous Pulse Output

z BYTE i8092MF_CONTINUE_MOVE(BYTE cardNo, WORD axis, long data)

Description:

This function issues a continuous motion command for several independent
axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
 The axis can be either X and Y
data: The specified speed (positive value for CW motion;

negative value for CCW motion)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE() function to identify
the errors.

NO No error.

Example:

BYTE cardNo=1; //select module 1
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 20000);
//set the maximum speed of all axes on module 1 to 20K PPS.
i8092MF_NORMAL_SPEED(cardNo, AXIS_XY, 0);
//set the speed profile for all axes as a symmetric T-curve.
i8092MF_SET_V(cardNo, AXIS_XY, 2000);
//set the speed of all axes on module 1 to 2000 PPS.
i8092MF_SET_A(cardNo, AXIS_XY, 1000);
//set the acceleration value of all axes to 1000 PPS/S.
i8092MF_SET_SV(cardNo, AXIS_XY, 2000);
//set the start velocity of all axes to 2000 PPS
i8092MF_CONTINUE_MOVE(cardNo, AXIS_XY, 1000);
//move all axes on module 1 at a speed of 1000 PPS.

ICPDAS I-8092F Software User Manual 51

6.2 Interpolation Commands
I-8092/F is a motion module of 2-axes, so first axis of interpolation is fixed X-axis
and second axis of interpolation is Y-axis.

6.2.1 Setting the Speed and Acc/Dec Mode for Interpolation

z void i8092MF_VECTOR_SPEED(BYTE cardNo, WORD nMode)

Description:

This function assigns the mode of vector speed of interpolation. Each
interpolation mode will refer to construct a working coordinate system. The X-axis
necessarily have to be the first axis. Different modes need different settings.
Please refer to the mode definitions.

Parameters:
 cardNo: Module number

nMode: 0 Æ 2-axis linear or circular motion at a constant vector speed
(Set VV and VSV; and VV=VSV)

1 Æ 2-axis linear motion using a symmetric T-curve velocity profile
(set VSV, VV, VA, and VAO)

2 Æ 2-axis linear motion using a symmetric S-curve velocity profile
(set VSV, VV, VK, and VAO)

3 Æ 2-axis linear motion using an asymmetric T-curve velocity
 profile (set VSV, VV, VA, VD, and VAO)
4 Æ 2-axis linear motion using an asymmetric S-curve velocity
 profile (set VSV, VV, VK, VL, and VAO)
5 Æ 2-axis circular motion using a symmetric T-curve velocity
 profile (set VSV, VV, VA, and VAO)
6 Æ 2-axis circular motion using an asymmetric T-curve velocity

profile (set VSV, VV, VA, VD, and VAO)

Return:
None

Example:

BYTE cardNo=1; //select module 1.
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 20000);
//set the maximum speed of all axes to 20K PPS.

//===

 i8092MF_VECTOR_SPEED(cardNo, 0);
//set module 1 to perform 2-axis linear or circular motion
//at a constant vector speed.

 i8092MF_SET_VSV(cardNo, 1000);

ICPDAS I-8092F Software User Manual 52

//set the starting vector speed to 1000 PPS.
 i8092MF_SET_VV(cardNo, 1000);

//set the vector speed to 1000 PPS.
 i8092MF_LINE_2D(1, 12000, 10000);

//execute the 2-axis linear interpolation motion.

//===
i8092MF_DEC_ENABLE(cardNo);
//enable the deceleration function.
i8092MF_VECTOR_SPEED(cardNo, 1);
//set module 1 to perform 2-axis linear motion using a symmetric
//S-curve velocity profile.
i8092MF_SET_VSV(cardNo, 500);
//set the starting vector speed to 500 PPS.
i8092MF_SET_VV(cardNo, 2000);
//set the vector speed to 2000 PPS.
i8092MF_SET_VA(cardNo, 1000);
//set the vector acceleration to 1000 PPS/Sec.
i8092MF_LINE_2D(cardNo, 20000, 10000);
//execute the 2-axis linear interpolation motion.

//===
i8092MF_VECTOR_SPEED(cardNo, 2);
//2-axis linear motion using a symmetric S-curve velocity profile.
i8092MF_SET_VSV(cardNo, 200);
//set the starting vector speed to 200 PPS.
i8092MF_SET_VV(cardNo, 2000);
//set the vector speed to 2000 PPS.
i8092MF_SET_VK(cardNo, 50);
//set the acceleration rate to 500 PPS/Sec.
i8092MF_SET_VAO(cardNo, 20);
//set the value of remaining offset pulses to 20.
i8092MF_LINE_2D(cardNo, 10000, 10000);
//execute the 2-axis linear interpolation motion.

//===
i8092MF_DEC_ENABLE(cardNo);
//enable the deceleration function.
i8092MF_VECTOR_SPEED(cardNo, 3);
//2-axis linear motion using an asymmetric T-curve velocity profile.
i8092MF_SET_VSV(cardNo, 100);
//set the start vector speed to 100 PPS.
i8092MF_SET_VV(cardNo, 2000);
//set the vector speed to 2000 PPS.
i8092MF_SET_VA(cardNo, 1000);
//set the vector acceleration to 1000 PPS/Sec.
i8092MF_SET_VD(cardNo, 500);

ICPDAS I-8092F Software User Manual 53

//set the vector deceleration to 500 PPS/Sec.
i8092MF_SET_VAO(cardNo, 20);
//set the value of remaining offset pulses to 20.
i8092MF_LINE_2D(cardNo, 10000, 5000);
//execute the 2-axis linear interpolation motion.

//===
long fp1=4000;
long fp2=10000;
int sv=200;
int v=2000;
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 8000);
i8092MF_VECTOR_SPEED(cardNo, 4);
//2-axis linear motion using an asymmetric S-curve velocity profile.
i8092MF_SET_VSV(cardNo, sv);
//set the starting velocity to sv PPS.
i8092MF_SET_VV(cardNo, v);
//set the vector speed to v PPS.
i8092MF_SET_VK(cardNo, 50);
//set the acceleration rate to 500 PPS/Sec^2.
i8092MF_SET_VL(cardNo, 30);
//set the deceleration rate to 300 PPS/Sec^2.
i8092MF_SET_VAO(cardNo, 20);
//set the value of remaining offset pulses to 20.
i8092MF_LINE_2D(cardNo, fp1, fp2);
//execute the 2-axis linear motion.

//===
long fp1=11000;
long fp2=9000;
long c1=10000;
long c2=0;
int sv=100;
int v=3000;
int a=5000;
int d=5000;
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 8000);
i8092MF_VECTOR_SPEED(cardNo, 5);
//2-axis circular motion using a symmetric T-curve velocity profile
i8092MF_SET_VSV(cardNo, sv);
//set the starting vector speed to sv PPS.
i8092MF_SET_VV(cardNo, v);
//set vector speed to v PPS.
i8092MF_SET_VA(cardNo, a);
//set the vector acceleration to a PPS/Sec.
i8092MF_SET_VAO(cardNo, 0);
//set the value of remaining offset pulses to 0 Pulse.

ICPDAS I-8092F Software User Manual 54

i8092MF_ARC_CW(cardNo, c1,c2, fp1, fp2);
//execute the 2-axis CW circular motion.

//===
long c1=300;
long c2=0;
int sv=100;
int v=3000;
int a=125;
int d=12;
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 8000);
i8092MF_VECTOR_SPEED(cardNo, 6);
//2-axis circular motion using an asymmetric T-curve velocity
//profile.
i8092MF_SET_VSV(cardNo, sv);
//set the starting vector speed to sv PPS.
i8092MF_SET_VV(cardNo, v);
//set vector speed to v PPS.
i8092MF_SET_VA(cardNo, a);
//set acceleration to a PPS/Sec.
i8092MF_SET_VD(cardNo, d);
//set the deceleration to d PPS/Sec.
i8092MF_SET_VAO(cardNo, 0);
//set the value of remaining offset pulses to 0.
i8092MF_CIRCLE_CW(cardNo, c1, c2);
//execute the 2-axis CW circular motion.

Note: Relevant parameters should be set before issuing the motion command.

ICPDAS I-8092F Software User Manual 55

6.2.2 Setting the Vector Starting Speed

z void i8092MF_SET_VSV(BYTE cardNo, DWORD data)

Description:
 This function sets the starting speed of the principle X-axis for the
interpolation motion.

Parameters:
 cardNo: Module number

data: The vector starting speed value (in PPS)

Return:
None

Example:

i8092MF_SET_VSV(1, 1000);
//set the starting speed of the axis 1 for the interpolation motion
//on module 1 to 1000 PPS.

6.2.3 Setting the Vector Speed

z void i8092MF_SET_VV(BYTE cardNo, DWORD data)

Description:
 This function sets the vector speed of the interpolation motion. Users do not
need to assign any axes on this function.

Parameters:
 cardNo: Module number

data: The vector speed value (in PPS)

Return:
None

Example:

i8092MF_SET_VV(1, 120000);
//set the vector speed of the interpolation on module 1
//to 120000 PPS.

ICPDAS I-8092F Software User Manual 56

6.2.4 Setting the Vector Acceleration

z void i8092MF_SET_VA(BYTE cardNo, DWORD data)

Description:
 This function sets the vector acceleration for interpolation motion. Users do
not have to assign any axes on this funciton.

Parameters:
 cardNo: Module number

data: The vector acceleration value (in PPS/Sec). The units are
PPS/Sec. This value is related to the maximum speed value
defined by i8092MF_SET_MAX_V() function. The maximum
available acceleration value is MAX_V * 125. The minimum
acceleration value is MAX_V ÷ 64, and all other acceleration
values are the integral multipliers of this value. The practical
value for application depends on the capability of the motor
drive and motor.

Return:

None

Example:

i8092MF_SET_MAX_V(1, AXIS_X, 20000);
 //set the maximum speed value of the X axis as 20,000 PPS.
 //therefore, do not set any acceleration value that is larger than

//20,000*125 PPS/sec. And 20,000 *125 = 2,500,000.
i8092MF_SET_VA(1, 100000);
//set the vector acceleration of the interpolation motion
//on module 1 to 100K PPS/Sec.

ICPDAS I-8092F Software User Manual 57

6.2.5 Setting the Vector Deceleration Value

z void i8092MF_SET_VD(BYTE cardNo, DWORD data)

Description:
 This function sets the deceleration value for the interpolation motion.

Parameters:
 cardNo: Module number

data: The vector deceleration value (in PPS/Sec). This value is
related to the maximum speed value defined by
i8092MF_SET_MAX_V() function. The maximum available
deceleration value is MAX_V * 125. The minimum deceleration
value is MAX_V ÷ 64, and all other deceleration values are
the integral multipliers of this value. The practical value for
application depends on the capability of the motor drive and
motor.

Return:

None

Example:

i8092MF_SET_MAX_V(1, AXIS_X, 20000);
 //set the maximum speed value of the X axis as 20,000 PPS.
 //therefore, do not set any deceleration value that is larger than

//20,000*125 PPS/sec. And 20,000 *125 = 2,500,000.
i8092MF_SET_VD(1, 100000);
//set the vector deceleration value of interpolation motion
//on module 1 to 100K PPS/Sec.

ICPDAS I-8092F Software User Manual 58

6.2.6 Setting the Vector Acceleration Rate

z void i8092MF_SET_VK(BYTE cardNo, DWORD data)

Description:
 Set the acceleration rate (jerk) value for interpolation motion.

Parameters:
 cardNo: Module number

data: The acceleration rate (jerk) value. The units are 2PPS/Sec . This
value is related to the maximum speed value defined by
i8092MF_SET_MAX_V() function. The maximum available
acceleration rate value is MAX_V * 781.25. The minimum
acceleration value is MAX_V * 0.0119211, and all other
acceleration values are the integral multipliers of this value.
The practical value for application depends on the capability
of the motor drive and motor. Note: since the DWORD can not
represent the maximum value; therefore, this value is given by
dividing the desired value by 10.

Return:

None

Example:

i8092MF_SET_MAX_V(1, AXIS_X, 20000);
 //set the maximum speed value of the X axis as 20,000 PPS.
 //therefore, do not set any jerk value that is larger than

//20,000*781.25 PPS/sec^2. And 20,000 *781.25 = 15,625,000.
i8092MF_SET_VK(1, 10000);
//set the acceleration rate of the interpolation motion on module
// 1 to 10,000 PPS/ Sec^2.

ICPDAS I-8092F Software User Manual 59

6.2.7 Setting the Number of the Remaining Offset Pulses

z void i8092MF_SET_VAO(BYTE cardNo, short int data)

Description:
 Setting this value will cause the motion control chip to start deceleration
earlier. The remaining offset pulses will be completed at low speed to allow the
controller to stop immediately when the offset pulse value has been reached.
Please refer to the figure below for more information.

Parameters:
 cardNo: Module number

data: The number of remaining offset pulses (-32,768 ~ +32,767)

Return:
None

Example:

i8092MF_SET_VAO(1, 200);
//set the number of remaining offset pulse value on module 1 to 200.

ICPDAS I-8092F Software User Manual 60

6.2.8 2-Axis Linear Interpolation Motion

z BYTE i8092MF_LINE_2D(BYTE cardNo, long fp1, long fp2)

Description:
 This function executes a 2-axis linear interpolation motion.

Parameters:
 cardNo: Module number

fp1: The displacement of the X-axis in Pulses
(-8,388,607 ~ +8,388,607)

fp2: The displacement of the Y-axis in Pulses
(-8,388,607 ~ +8,388,607)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE() function to identify
the error.

NO No errors.

Example:
 i8092MF_LINE_2D(1, 12000, 10000);
 //execute the 2-axis linear interpolation motion on module 1.

2-axis linear interpolation motion

ICPDAS I-8092F Software User Manual 61

6.2.9 2-Axis Circular Interpolation Motion (an Arc)

z BYTE i8092MF_ARC_CW(BYTE cardNo, long cp1, long cp2, long fp1, long fp2)

Description:

This function executes a 2-axis circular interpolation motion in a clockwise
(CW) direction.

Parameters:
 cardNo: Module number

cp1: The relative position of the center to the current position of
 X-axis in pulses. (-8,388,607 ~ +8,388,607)
cp2: The relative position of the center to the current position of
 Y-axis in pulses. (-8,388,607 ~ +8,388,607)
fp1: The displacement of the X-axis in pulses.

(-8,388,607 ~ +8,388,607)
fp2: Displacement of the Y-axis in pulses.

(-8,388,607 ~ +8,388,607)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE () function to identify
the error.

NO No errors.

Example:

i8092MF_ARC_CW(1, -5000, -5000, -10000, -10000);
 //Issues a command to perform a circular motion (an arc)

//in a CW direction. Please refer to the following figure.

2-axis circular motion in a CW direction

ICPDAS I-8092F Software User Manual 62

z BYTE i8092MF_ARC_CCW(BYTE cardNo, long cp1, long cp2, long fp1, long fp2)

Description:

This function execute a 2-axis circular interpolation motion in a
counter-clockwise (CCW) direction.

Parameters:
 cardNo: Module number

cp1: The relative position of the center to the current position of
 X-axis in pulses. (-8,388,607 ~ +8,388,607)
cp2: The relative position of the center to the current position of
 Y-axis in pulses. (-8,388,607 ~ +8,388,607)
fp1: The displacement of the X-axis in pulses.

(-8,388,607 ~ +8,388,607)
fp2: Displacement of the Y-axis in pulses.

(-8,388,607 ~ +8,388,607)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE() function to identify
the errors.

NO No errors.

Example:

i8092MF_ARC_CCW(1, -5000, -5000, -10000, -10000);
 //Issues a command to perform a circular motion (an arc)

//in a CCW direction. Refer to the following figure.

2-axis circular motion in a CCW direction

ICPDAS I-8092F Software User Manual 63

6.2.10 2-Axis Circular Interpolation Motion

z BYTE i8092MF_CIRCLE_CW(BYTE cardNo, long cp1, long cp2)

Description:

This function executes a 2-axis circular interpolation motion in a clockwise
(CW) direction.

Parameters:
 cardNo: Module number

cp1: The relative position of the center to the current position of
 X-axis in pulses. (-8,388,607 ~ +8,388,607)
cp2: The relative position of the center to the current position of
 Y-axis in pulses. (-8,388,607 ~ +8,388,607)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE() function to identify
the errors.

NO No errors.

Example:

i8092MF_CIRCLE_CW(1, 0, 10000);
 //execute a circular motion (a complete circle) in a CW direction on module 1.

z BYTE i8092MF_CIRCLE_CCW(BYTE cardNo, long cp1, long cp2)

Description:

This function executes a 2-axis circular interpolation motion in a
counter-clockwise (CCW) direction.

Parameters:
 cardNo: Module number

cp1: The relative position of the center to the current position of
 X-axis in pulses. (-8,388,607 ~ +8,388,607)
cp2: The relative position of the center to the current position of
 Y-axis in pulses. (-8,388,607 ~ +8,388,607)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE () function to identify

ICPDAS I-8092F Software User Manual 64

the error.
NO No errors

Example:

i8092MF_CIRCLE_CCW(1, 0, 10000);
 //execute a circular motion (a circle) in CCW direction

//on module 1

ICPDAS I-8092F Software User Manual 65

6.3 Continuous Interpolation
If it is broken and stopped，please solve it refer in section 6.5.5 !

6.3.1 2-Axis Rectangular Motion

z BYTE i8092MF_RECTANGLE(

BYTE cardNo, WORD nAcc, WORD Sp, WORD nDir, long Lp, long Wp,
long Rp, DWORD RSV,DWORD RV, DWORD RA, DWORD RD)

Description:
 Continuous interpolation will be performed to create a rectangular motion,
which is formed by 4 lines and 4 arcs. The length of each side can be changed. The
radius of each arc is the same and it can also be changed. The deceleration point
will be calculated automatically. This is a command macro command that appears
in various motion applications. However, it is a software macro-function; therefore,
it requires CPU resource to run this function.

Parameters:
 cardNo: Module number

nAcc: 0 Æ constant vector speed interpolation mode
1 Æ symmetric T-curve Acc/Dec interpolation mode

Sp: Start point 0 ~ 7. (Sp0 ~ Sp7 are defined in the following
 figure)

nDir: Direction of movement
0: CCW; 1: CW

Lp: Length in Pulses (1 ~ 8,388,607)
Wp: Width in Pulses (1 ~ 8,388,607)
Rp: Radius of each in pulses (1 ~ 8,388,607)
RSV: Starting speed (in PPS)
RV: Vector speed (in PPS)
RA: Acceleration (PPS/Sec)
RD: Deceleration of the last segment (in PPS/Sec)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE() function to identify
the error.

NO No errors.

Example:
 BYTE cardNo=1; //select module 1.

int sv=1000; //starting speed: 1000 PPS.

ICPDAS I-8092F Software User Manual 66

int v=10000; //vector speed: 10000 PPS.
int a=5000; //acceleration: 5000 PPS/Sec.
int d=5000; //deceleration: 5000 PPS/Sec.
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 16000);
//set the maximum speed to 16000 PPS.

i8092MF_RECTANGLE(cardNo, AXIS_X, AXIS_Y, 1, 0, 0, 20000, 10000, 1000, sv, v,
a, d);
//execute a rectangular motion on the XY plane

6.3.2 2-Axis Continuous Linear Interpolation

z BYTE i8092MF_LINE_2D_INITIAL(BYTE cardNo, DWORD VSV,DWORD VV,

DWORD VA)

Description:
 This function sets the necessary parameters for a 2-axis continuous linear
interpolation using symmetric T-curve speed profile.

Parameters:
 cardNo: Module number

VSV: Starting speed (in PPS)
VV: Vector speed (in PPS)
VA: Vector acceleration (PPS/Sec)

Return:
None

ICPDAS I-8092F Software User Manual 67

Example:
 i8092MF_LINE_2D_INITIAL(…);

//This function should be defined before the i8092MF_LINE_2D_CONTINUE()
//function is used. Please refer to the example of this function.

z BYTE i8092MF_LINE_2D_CONTINUE(BYTE cardNo, WORD nType, long fp1,

long fp2)

Description:

This function executes a 2-axis continuous linear interpolation. However, it is
a software macro-function; therefore, it requires CPU resource to run this
function.

Parameters:
 cardNo: Module number

nType: 0: 2-axis linear continuous interpolation
 1: end of 2-axis linear continuous interpolation
fp1: The assigned number of pulses for the axis 1 (in Pulses)
 (-8,388,607 ~ +8,388,607)
fp2: The assigned number of pulses for the axis 2 (in Pulses)
 (-8,388,607 ~ +8,388,607)

Return:
YES An error has occurred.

Use the i8092MF_GET_ERROR_CODE () function to identify
the error.

NO No errors.

Example:
 BYTE cardNo=1; //select module 1.

int sv=300; //starting speed: 300 PPS.
int v=18000; //vector speed: 18000 PPS.
long a=500000; //acceleration: 500000 PPS/Sec.
int loop1;
i8092MF_SET_MAX_V(cardNo, AXIS_XY,160000);
i8092MF_LINE_2D_INITIAL(cardNo, AXIS_X, AXIS_Y, sv, v, a);
for (loop1=0; loop1<10000; loop1++)
{
 i8092MF_LINE_2D_CONTINUE(cardNo, 0, 100, 100);
 i8092MF_LINE_2D_CONTINUE(cardNo, 0, -100, -100);
}
i8092MF_LINE_2D_CONTINUE(cardNo, 1, 100, 100);

ICPDAS I-8092F Software User Manual 68

6.3.3 Multi-Segment Continuous Interpolation (Using Array)

z BYTE i8092MF_CONTINUE_INTP(

BYTE cardNo, WORD nAcc, DWORD VSV, DWORD VV, DWORD VA,
DWORD VD, BYTE nType[], long cp1[], long cp2[], long fp1[], long
fp2[])

Description:

This function executes a multi-segment continuous interpolation. Those
segments are stored in arrays declared in the arguments . The speed profile
can be either a constant speed or a symmetric T-curve. The deceleration point
will be calculated automatically. However, it is a software macro-function;
therefore, it requires CPU resource to run this function.

Parameters:
 cardNo: Module number

nAcc: 0 Æ a constant speed interpolation. Please set VV.
1 Æ a symmetric T-curve interpolation. Please set VSV, VV, VA,
and VD.

VSV: The starting speed (in PPS)
VV: Interpolation vector speed (in PPS)
VA: Acceleration (in PPS/Sec)
VD: Deceleration (in PPS/Sec)

nType[]: Maximum segment: 1024 (0 ~ 1023). It contains the

interpolation commands defined as follows.

1 Æi8092MF_LINE_2D(BYTE cardNo, long fp1, long fp2);
2 Æi8092MF_ARC_CW(BYTE cardNo, long cp1, long cp2, long fp1, long fp2);
3 Æi8092MF_ARC_CCW(BYTE cardNo, long cp1, long cp2, long fp1, long fp2);
4 Æi8092MF_CIRCLE_CW(BYTE cardNo, long cp1, long cp2);
5 Æi8092MF_CIRCLE_CCW(BYTE cardNo, long cp1, long cp2);
7 Æ It indicates the end of continuous interpolation.

cp1[]: It contains a list of segment center point data at axis 1.
(-8,388,607 ~ +8,388,607)

cp2[]: It contains a list of segment center point data at axis 2.
(-8,388,607 ~ +8,388,607)

fp1[]: This array contains a list of segment end point data at axis 1.
(-8,388,607 ~ +8,388,607)

fp2[]: This array contains a list of segment end point data at axis 2.
(-8,388,607 ~ +8,388,607)

Return:

ICPDAS I-8092F Software User Manual 69

YES An error has occurred. Use the
i8092MF_GET_ERROR_CODE () function to identify the error.

NO No errors.

Example:

BYTE cardNo=1; //select module 1.
int sv=100; //set the starting speed to 100 PPS.

 int v=3000; //set the speed to 3000 PPS.
 int a=2000; //set the acceleration to 2000 PPS/Sec.

int d=2000; //set the deceleration to 2000 PPS/Sec.
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 20000);
//set the maximum speed to 20K PPS.

 BYTE nType[10]= { 1, 2, 1, 2, 1,7,0,0,0,0};
 long cp1[10]= { 0, 10000, 0, 0, 0,0,0,0,0,0};
 long cp2[10]= { 0, 0, 0,-10000, 0,0,0,0,0,0};
 long fp1[10]= { 10000, 10000, 1000, 10000,-31000,0,0,0,0,0};
 long fp2[10]= { 10000, 10000, 0,-10000,-10000,0,0,0,0,0};
 //put data of the required segments in arrays.

 i8092MF_CONTIUNE_INTP(

cardNo, AXIS_X, AXIS_Y, 0, 1, sv, v, a, d, nType, cp1, cp2, fp1, fp2);
//execute the 2-axis continuous interpolation.
//The deceleration point will be calculated automatically.
//For this example, the final position of this motion will return to the starting
point.

6.3.4 2-Axis Ratio Motion

z BYTE i8092MF_RATIO_INITIAL(BYTE cardNo, DWORD SV , DWORD V ,

DWORD A, float ratio)

Description:

This function sets the Initial values for ratio motion (motion in ratio) using a
symmetric T-curve speed profile. However, it is a software macro-function;
therefore, it requires CPU resource to run this function.

Parameters:
 cardNo: Module number

SV: Set the value for the starting speed (in PPS).
V: Set the value for the vector speed (in PPS).
A: Set the acceleration value (in PPS/Sec).
ratio: Set the ratio value between the two assigned axes.

ICPDAS I-8092F Software User Manual 70

Return:

None

Example:
 i8092MF_RATIO_INITIAL(…);

//Initial setting for i8092MF_RATIO_2D(…) function.
//Please refer to the example of i8092MF_RATIO_2D() function.

z BYTE i8092MF_RATIO_2D(BYTE cardNo, WORD nType, long data, WORD nDir)

Description:

This function performs a two-axis ratio motion.

Parameters:
 cardNo: Module number

nType: 0 Æ Perform the ratio motion.
1 Æ Declare the end of ratio motion.

data: The pulse number of X-axis
(-8,388,607 ~ +8,388,607)

nDir: Direction of the Y-axis.
 0: CW; 1: CCW

Return:

YES An error has occurred. Use the
i8092MF_GET_ERROR_CODE () function to identify the error.

NO No errors.

Example:

BYTE cardNo=1; //select module 1.
 int sv=300; //set starting speed to 300 PPS.

 int v=18000; //set vector speed to 18000 PPS.
 long a=500000; //set acceleration value to 500K PPS/Sec.
 int loop1, loop2;

i8092MF_SET_MAX_V(cardNo, 0Xf,160000);
//set maximum speed value to 18000 PPS.

 i8092MF_RATIO_INITIAL(cardNo, sv, v, a, 0.36);
//The ratio is 0.36.

 for (loop2 = 0; loop2 < 5; loop2++)
{

 for (loop1 = 0; loop1 < 5; loop1++)
{

 i8092MF_RATIO_2D(cardNo, 0, 3600, 0);

ICPDAS I-8092F Software User Manual 71

 //perform the ratio motion in the CW direction.
 i8092MF_RATIO_2D(cardNo, 0, 3600, 1);

//perform the ratio motion in the CCW direction.
 }
 i8092MF_RATIO_2D(cardNo, 0, 7200, 0);
 i8092MF_RATIO_2D(cardNo, 0, 3600, 1);
 }
 i8092MF_RATIO_2D(cardNo, 1, 7200, 0);
 //End the ratio motion.

6.3.5 Mixed Linear and Circular 2-axis motions in Continuous
Interpolation

z void i8092MF_MIX_2D_INITIAL(BYTE cardNo, WORD nAcc, DWORD VSV ,

 DWORD VV , DWORD VA)

Description:

This function does the initial settings for mixed linear and circular 2-axis
motions in continuous interpolation.

Parameters:
 cardNo: Module number

nAcc: 0 Æ constant speed (VV)
1 Æ symmetric T-curve Acc/Dec (VSV、VV、VA)

VSV: Starting speed (in PPS)
VV: Vector speed (in PPS)
VA: Vector acceleration (PPS/Sec)

Return:

None

Example:

i8092MF_MIX_2D_INITIAL(…);
//This function should be defined before the i8092MF_MIX_2D_CONTINUE()
//function is used. Please refer to the example of this function.

ICPDAS I-8092F Software User Manual 72

z BYTE i8092MF_MIX_2D_CONTINUE(BYTE cardNo, WORD nAcc,
WORD nType, long cp1, long cp2, long fp1, long fp2)

Description:
This function executes mixed linear and circular 2-axis motion in continuous
interpolation. However, it is a software macro-function; therefore, it requires
CPU resource to run this function.

Parameters:
 cardNo: Module number

nAcc: 0 Æ continuous interpolation.
1 Æ it is the last command of this continuous interpolation. In

Acc/Dec mode, it will perform a deceleration stop. In
constant speed mode, it will directly stop rather than
decelerate.

nType:

1 Æi8092MF_LINE_2D(BYTE cardNo, long fp1, long fp2);
2 Æi8092MF_ARC_CW(BYTE cardNo, long cp1, long cp2, long fp1, long fp2);
3 Æi8092MF_ARC_CCW(BYTE cardNo, long cp1, long cp2, long fp1, long fp2);
4 Æi8092MF_CIRCLE_CW(BYTE cardNo, long cp1, long cp2);
5 Æi8092MF_CIRCLE_CCW(BYTE cardNo, long cp1, long cp2);

cp1: It assigns the center point data at X-axis.

(-8,388,607 ~ +8,388,607)
cp2: It assigns the center point data at Y-axis.

(-8,388,607 ~ +8,388,607)
fp1: It assigns the end point data at X-axis.

(-8,388,607 ~ +8,388,607)
fp2: It assigns the end point data at Y-axis.

(-8,388,607 ~ +8,388,607)

Return:
YES An error has occurred. Use the

i8092MF_GET_ERROR_CODE () function to identify the error.
NO No errors.

Example:
 BYTE cardNo=1; //select module 1.

int sv=300; //starting speed: 300 PPS
int v=18000; //vector speed: 18000 PPS
long a=500000; //acceleration: 500000 PPS/Sec

 unsigned short loop1;

i8092MF_SET_MAX_V(cardNo, AXIS_XY, 160000);

ICPDAS I-8092F Software User Manual 73

 i8092MF_MIX_2D_INITIAL(cardNo, 1, sv, v, a);
 for (loop1 = 0; loop1 < 10000; loop1++)
 {
 i8092MF_MIX_2D_CONTINUE (cardNo, 0, 1, 0, 0, 100, 100);
 i8092MF_MIX_2D_CONTINUE (cardNo, 0, 2, 100, 0, 100, 100);
 }
 i8092MF_MIX_2D_CONTINUE (cardNo, 1, 4, 100, 100, 0, 0);

ICPDAS I-8092F Software User Manual 74

6.4 Set the Interrupt Factors
6.4.1 Set the Interrupt Factors
z void i8092MF_INTFACTOR_ENABLE(BYTE cardNo, WORD axis, WORD nINT)

Description:
 This function sets the interrupt factors

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

nINT Interrupt factors

Value Symbol Statement

1 P>=C-

Interrupt occurs when the value of logical / real
position counter is larger than or equal to that of
COMP- register. The COMP- must be
pre-configired with i8092MF_SET_COMPARE()
(please refer to Section 6.5.7)

2 P<C-

Interrupt occurs when the value of logical / real
position counter is smaller than that of COMP-
register. The COMP- must be pre-configired with
i8092MF_SET_COMPARE() (please refer to
Section 6.5.7)

3 P>=C+

Interrupt occurs when the value of logical / real
position counter is smaller than that of COMP+
register. The COMP+ must be pre-configired with
i8092MF_SET_COMPARE() (please refer to
Section 6.5.7)

4 P<C+

Interrupt occurs when the value of logical / real
position counter is larger than or equal to that
of COMP+ register. The COMP+ must be
pre-configired with i8092MF_SET_COMPARE()
(please refer to Section 6.5.7)

5 C-END
Interrupt occurs at the end of the constant speed
drive or completion of Acceleration Offset Pulse
output.

6 C-STA Interrupt occurs at the start of the constant speed
drive or begin of Acceleration Offset Pulse output.

7 D-END Interrupt occurs when the driving is finished

Return:
 None

ICPDAS I-8092F Software User Manual 75

Example:
 HANDLE hINT; //Interrupt event handle
 HANDLE i8092_hThread; //IST handle
 DWORD WINAPI i8092_ThreadFunction(LPVOID lParam); //IST function
 BYTE CardNo=1;
 BYTE Slot1=1;

 //MFC button event: Create the thread and set the interrupt factor
 void CI8092QCDlg::OnTestint()
 {
 DWORD dwThreadID = 0;
 HWND hWnd = NULL;
 //Create thread: i8092_ThreadFunction
 i8092_hThread = CreateThread(NULL, 0, i8092_ThreadFunction, hWnd, 0,
 &dwThreadID);
 BYTE axis=AXIS_XY;
 i8092MF_SET_MAX_V(CardNo, axis, 20000);
 i8092MF_NORMAL_SPEED(CardNo, axis, 0);
 i8092MF_SET_V(CardNo, axis, 20000);
 i8092MF_SET_A(CardNo, axis, 100000);
 i8092MF_SET_SV(CardNo, axis, 20000);
 i8092MF_SET_AO(CardNo, axis, 0);
 //Initialize the interrupt
 hINTP=Slot_Register_Interrupt(Slot1);
 //Set the interrupt factor: D-END
 i8092MF_INTFACTOR_ENABLE(CardNo, AXIS_X, 7);
 // 4-Axis fixed pulse drive
 i8092MF_FIXED_MOVE(CardNo, AXIS_XY, 10000);

 while (i8092MF_STOP_WAIT(CardNo, 0xf) == NO)
 { //Wait for motion done
 DoEvents();
 Sleep(1);
 }
 }

 //IST function
 DWORD WINAPI i8092_ThreadFunction(LPVOID lParam)
 {
 DWORD dwEvent;
 WORD RR3_X;
 if(hINTP != NULL)
 {
 //Wait the event object
 dwEvent = WaitForSingleObject(hINTP, INFINITE);
 switch(dwEvent)
 {

ICPDAS I-8092F Software User Manual 76

 case WAIT_OBJECT_0:
 //Get the interrupt event object successfully
 //While the driving stop, clear the position counter
 i8092MF_SET_LP(CardNo, AXIS_X, 0)
 // …
 //Other user codes in the IST
 // …
 //End of the interrupt
 Slot_Interrupt_Done(Slot1);
 //Get the interrupt status
 RR3_X = i8092_GET_RR3(CardNo, AXIS_X);
 //Disable the interrupt factor
 i8092MF_INTFACTOR_DISABLE(CardNo, AXIS_X);
 //Close the interrupt
 Slot_Interrupt_Close(Slot1);
 break;
 case WAIT_TIMEOUT:
 break;
 case WAIT_FAILED:
 break;
 }
 }

 return 1;
}

Note:
 Please refer the three functions: Slot_Register_Interrupt(BYTE Slot),
 Slot_Interrupt_Done(BYTE Slot), Slot_Interrupt_Close(BYTE Slot) in the
 WinConSDK.

6.4.2 Interrupt Disabled
z void i8092MF_INTFACTOR_DISABLE(BYTE cardNo, WORD axis)

Description:
 This function disables the interrupt factors

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

ICPDAS I-8092F Software User Manual 77

Return:
 None

Example:
 Please refer to 6.4.1

6.4.3 Read the Interrupt Occurrence

z WORD i8092MF_GET_RR3(BYTE cardNo, WORD axis)

Description:
 Read the RR3 register that reflects the occurrence of Interrupt.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:

The content of RR3 register.
RR3 Value 說明

0x002 P>=C- Once the value o flogic / real position counter
is larger than that of COMP- register

0x004 P<C- Once the value o flogic / real position counter
is smaller than that of COMP- register

0x008 P<C+ Once the value o flogic / real position counter
is smaller than that of COMP+ register

0x010 P>=C+ Once the value o flogic / real position counter
is larger than that of COMP+ register

0x020 C-END
Interrupt occurs at the end of the constant
speed drive or completion of Acceleration
Offset Pulse output.

0x040 C-STA
Interrupt occurs at the start of the constant
speed drive or begin of Acceleration Offset
Pulse output.

0x080 D-END Interrupt occurs when the driving is finished

Example:

i8092MF_GET_RR3 (cardNo, AXIS_X);
 //read the Interrupt status of AXIS_X

ICPDAS I-8092F Software User Manual 78

6.5 Other functions
6.5.1 Holding the Driving Command
z void i8092MF_DRV_HOLD(BYTE cardNo, WORD axis)

Description:

This command is usually used when users desire to starti multi-axis driving
simultaneously. When this command is issued, users may write other driving
commands to the control card. All the driving commands will be held after
i8092MF_DRV_HOLD() is issued, and these commands will be started once the
i8092MF_DRV_START() is issued. However, if in driving, this command will not
cause the driving to be stopped. But the next command will be held.

Parameters:
 cardNo: Module number

axis: Axis or Axes (Please refer to Table 2-1 for the axis definition.)

Return:
None

Example:
 Please refer to the example in section 6.5.2.

6.5.2 Release the Holding Status, and Start the Driving

z void i8092MF_DRV_START(BYTE cardNo, WORD axis)

ICPDAS I-8092F Software User Manual 79

Description:
This command releases the holding status, and start the driving of the

assigned axes immediately.

Parameters:
 cardNo: Module number

axis: Axis or Axes (Please refer to Table 2-1 for the axis definition.)

Return:
None

Example:
BYTE cardNo=1; //select card 1.
i8092MF_DRV_HOLD(cardNo, AXIS_XY); //hold the driving command to XY
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 10000);
//set the maximum speed of X-axis and Y-axis to be 10K PPS.
i8092MF_NORMAL_SPEED(cardNo, AXIS_XY, 0);
//set the driving mode to be symmetric T-curve.
i8092MF_SET_V(cardNo, AXIS_X, 2000);
//set the speed of X-axis to 2,000 PPS.
i8092MF_SET_A(cardNo, AXIS_X, 1000);
//set the acceleration of X-axis to 1,000 PPS/S.
i8092MF_SET_SV(cardNo, AXIS_X, 2000);
//set the starting speed to 2,000 PPS.
i8092MF_SET_V(cardNo, AXIS_Y, 2000);
//set the speed of Y-axis to 2,000 PPS.
i8092MF_SET_A(cardNo, AXIS_Y, 1000);
//set the acceleration of Y-axis to 1,000 PPS/S.
i8092MF_SET_SV(cardNo, AXIS_Y, 2000);
//set the starting speed to 2,000 PPS.
i8092MF_FIXED_MOVE(cardNo, AXIS_X, 5000);
//command X-axis to move 5,000 Pulse. This command is be held.
i8092MF_FIXED_MOVE(cardNo, AXIS_Y, 15000);
//command Y-axis to move 15,000 Pulse. This command is be held.
i8092MF_DRV_START(cardNo, AXIS_XY);
//release the holding status. X and Y axes will start to move simultaneously.

6.5.3 Waiting until the Motion Is Completed

z BYTE i8092MF_STOP_WAIT(BYTE cardNo, WORD axis)

ICPDAS I-8092F Software User Manual 80

Description:
This function can be used to assign commands to be performed while waiting

for all motion to be completed (stopped).

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:
YES Motion is complete
NO Motion is not complete

EXAMPLE:

BYTE cardNo=1; //select module 1
i8092MF_SET_MAX_V(cardNo, AXIS_XY, 20000);
//set the maximum speed of all axes on module 1 to 20K PPS.
i8092MF_NORMAL_SPEED(cardNo, AXIS_XY, 0);
//set the speed profile of all axes on module 1 to be symmetric T-curve
i8092MF_SET_V(cardNo, AXIS_XY, 2000);
//set the speed of all axes on module 1 to 2000 PPS.
i8092MF_SET_A(cardNo, AXIS_XY,1000);
//set the acceleration value of all axes on module 1 to 1000 PPS/S.
i8092MF_SET_SV(cardNo, AXIS_XY, 2000);
//set the start velocity of all axes on module 1 to 2000 PPS.
i8092MF_SET_AO(cardNo, AXIS_XY, 9);
//set the value of remaining offset pulses to 9 pulses.
i8092MF_FIXED_MOVE(cardNo, AXIS_XY, 10000);
// move all axes on module 1 for 10000 pulses.

if (i8092MF_STOP_WAIT(cardNo, AXIS_X) == NO)
{

 //perform some actions here if the X axis has not finished its
//motion.

}

ICPDAS I-8092F Software User Manual 81

6.5.4 Stopping the Axes

z void i8092MF_STOP_SLOWLY(BYTE cardNo, WORD axis)

Description:

This function decelerates and finally stops the assigned axes slowly.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:

None

Example:

i8092MF_STOP_SLOWLY(1, AXIS_XY);
//decelerate and stop the X and Y axes

z void i8092MF_STOP_SUDDENLY(BYTE cardNo, WORD axis)

Description:

This function immediately stops the assigned axes.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:

None

Example:

 i8092MF_STOP_SUDDENLY(1, AXIS_XY);
//immediately stop the X and Y axes.

ICPDAS I-8092F Software User Manual 82

z void i8092MF_VSTOP_SLOWLY(BYTE cardNo)

Description:

This function stops interpolation motion of the assigned module in a
decelerating way.

Parameters:
 cardNo: Module number

Return:

None

Example:

i8092MF_VSTOP_SLOWLY(1);
//stop the interpolation of card 1 in a decelerating way.

z void i8092MF_VSTOP_SUDDENLY(BYTE cardNo)

Description:

This function stops interpolation motion of the assigned module immediately.

Parameters:
 cardNo: Module number

Return:

None

Example:

i8092MF_VSTOP_SUDDENLY(1);
// stop the interpolation of card 1 immediately.

ICPDAS I-8092F Software User Manual 83

z void i8092MF_SSTOP_SLOWLY(BYTE cardNo, WORD axis)

Description:

Except for State-Control, This function provides the similar feature with
i8092MF_STOP_ SLOWLY (). Stop pulse output simply (no ERROR_CODE 256
returned).

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:

None

Example:

i8092MF_SSTOP_SLOWLY(1, AXIS_XY);
//decelerate and stop the X and Y axes

z void i8092MF_SSTOP_SUDDENLY(BYTE cardNo, WORD axis)

Description:

Except for State-Control, This function provides the similar feature with
i8092MF_ VSTOP_ SUDDENLY (). Stop pulse output simply(no
ERROR_CODE 256 returned).

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)

Return:

None

Example:

 i8092MF_SSTOP_SUDDENLY(1, AXIS_XY);
//immediately stop the X and Y axes.

ICPDAS I-8092F Software User Manual 84

z void i8092MF_SVSTOP_SLOWLY(BYTE cardNo)

Description:

Except for State-Control, This function provides the similar feature with
i8092MF_ VSTOP_ SLOWLY (). Stop pulse output simply(no ERROR_CODE
256 returned).

Parameters:
 cardNo: Module number

Return:

None

Example:

i8092MF_SVSTOP_SLOWLY(1);
//stop the interpolation of card 1 in a decelerating way.

z void i8092MF_SVSTOP_SUDDENLY(BYTE cardNo)

Description:

Except for State-Control, This function provides the similar feature with
i8092MF_ VSTOP_ SUDDENLY (). Stop pulse output simply(no
ERROR_CODE 256 returned).

Parameters:
 cardNo: Module number

Return:

None

Example:

i8092MF_SVSTOP_SUDDENLY(1);
// stop the interpolation of card 1 immediately.

ICPDAS I-8092F Software User Manual 85

6.5.5 Clear the Stop Status

z void i8092MF_CLEAR_STOP(BYTE cardNo)

Description:
 After using anyone of the stop functions mentioned in section 6.5.4,

please solve the malfunction, then issue this function to clear the stop
status.

Paramters:
 cardNo: Module number

Return:

None

Example:
 i8092MF_CLEAR_STOP(1);

//clear the error status of card 1.

6.5.6 End of Interpolation

z void i8092MF_INTP_END(BYTE cardNo, WORD type)

Description:

1. If the current motion status is running a interpolation motion and you
would like to issue a single axis motion or change the coordinate
definition, you should call this function before the new command is
issued.

2. You can redefine the MAX_V for each axis. In this way, you do not have to
execute i8092MF_INTP_END() function.

Parameters:

cardNo: Module number
type: 0 Æ 2-axis interpolation

1 Æ 3-axis interpolation

Return:
None

Example:

i8092MF_INTP_END(1, 0); //declear the end of a 2-axis interpolation on card 1.

ICPDAS I-8092F Software User Manual 86

6.5.7 Setting the COMPARE value

z void i8092MF_SET_COMPARE(BYTE cardNo, WORD axis, WORD nSELECT,
 WORD nTYPE, long data)

Description:
 This function sets the values of COMPARE registers. Howerer, it will disable
the functions of software limits.

Parameters:
 cardNo: Module number

axis: Axis or axes (Please refer to Table 2-1)
nSELECT: Select the COMPARE register

0 Æ COMP+
 1 Æ COPM-
nTYPE: Select the souece for comparison

0 Æ Position(P) = LP
 1 Æ Position(P) = EP
data: Set the COMPARE value: -2,147,483,648 ~ +2,147,483,647

Return:
 None

Example:

i8092MF_SET_COMPARE(cardNo, AXIS_X, 0, 1, 5000);
//Set the comparison function for X-Axis.
//Set the compared source to be EP; and the COMP+ value to 5000.

ICPDAS I-8092F Software User Manual 87

Appendix A (I-8092F Basic Functions)

A.1 i8092F Command Set

Table A-1 I-8092F motion command classification

Function Classification Statement

Registers Management Functions

Set the command register (WR0), mode registers
(WR1~WR3), output register (WR4), and interpolation
mode register (WR5). Get the status registers
(RR0~RR7)

Initial Functions

Set the initial status of the system. There are about the
registration, the card name, the slot number, the output
pulse mode and hardware limit signal and software limit
signal.

 Basic Motion Command Functions
Provides the (T/S)-Curve acceleration/ deceleration
(symmetric / asymmetric) for 2-axes.

Interpolation Functions
Provides the 2 axes linear interpolation, circular
interpolation, and 2 axes bit pattern interpolation

Automatic Home Search
Provides the automatic home search function, the
hardware signals setting, and the extension mode
function setting.

 Interrupt Control Functions
Uses the MCX312’s interrupt factors and the interrupt
service routine (ISR) to design the path planning or
command the continuous motion.

 Axis I/O Signal Functions
Include the alarm, In-position, external signal settings
and the servo input status settings.

 Register Management Functions
Include the set/get of the logic position counters and
the encoder position counters, and get the current
velocity and acceleration.

ICPDAS I-8092F Software User Manual 88

A.2 Pulse Output Command

A.2.1 Signal Types
I-8092F has two modes for pulse output command: One is fixed-pulse command output mode;
the other is continuous pulse command output mode. User can choose the modes by setting the
specific registers. There are two ways to choose the desired pulse mode: a) adjusting hardware
jumper, and b) setting registers by software programming. The output pulse command modes are
showing in Table 2-2. Moreover, the detail illustration for the pulse modes are shown in Fig. A-1~
Fig. A-6.

Fig. A-1 CW/CCW Input mode 1

Fig. A-2 CW/CCW Input mode 2

ICPDAS I-8092F Software User Manual 89

Fig. A-3 Pulse / Direction input mode 1

Fig. A-4 Pulse / Direction input mode 2

Fig. A-5 Pulse / Direction input mode 3

Fig. A-6 Pulse / Direction input mode 4

ICPDAS I-8092F Software User Manual 90

A.2.2 Fixed Pulse Driving

When host CPU writes a pulse numbers into I-8092F for fixed pulse driving, and configures the
performance such as acceleration / deceleration and speed. I-8092F will generate the pulses and
output them automatically. When output pulse numbers are equal to the command pulse
numbers, I-8092F stops the output. The profile is showing in Fig. A-7. Concerning the execution
of fixed pulse driving in acceleration / deceleration, it is necessary to set the following
parameters:

� Range: R
� Initial Speed: SV (PPS)
� Driving Speed: V (PPS)
� Acceleration: A (PPS/Sec)
� Deceleration: D (PPS/Sec)
� Output Pulse Numbers: P

A.2.3 Changing Output Pulse Numbers in Driving
The output pulse numbers can be changed in the fixed pulse driving. If the command is for
increasing the output pulse, the pulse output profile is shown as Fig. A-8 or A-9.
If the command is for decreasing the output pulses, the output pulse will be stopped immediately
as shown in Fig. A-10. Furthermore, when in the S-curve acceleration /deceleration driving mode,
the output pulse number change will occur to an incomplete deceleration S-curve.

A.2.4 Offset Setting for Acceleration/Deceleration Driving
The offset function can be used for compensating the pulses when the decelerating speed
doesn’t’ reach the setting initial speed during the S-curve fixed pulse driving. It will calculate the
acceleration / deceleration point automatically, and will arrange the pulse numbers in
acceleration equal to that in deceleration. The method is calculating the output acceleration
pulses and comparing them with the remaining pulses. When the remaining pulses are equal to
or less the pulses in acceleration, it starts the deceleration. When setting the offset for
deceleration, it will start deceleration early for the offset. The remaining pulses of offset will be
driving output at the initial speed (see Fig. A-11). The default value for offset is 8 when motion
card power-on reset. It is not necessary to change the shift pulse value in the case of
acceleration/deceleration fixed pulse driving.

ICPDAS I-8092F Software User Manual 91

 Fig. A-7 Fixed pulse driving

Fig. A-8 Changing the output pulse

 numbers in driving

 Fig. A-9 Changing command during
 deceleration

 Fig. A-10 Changing the lesser pulse
 numbers than output pulse stop

Fig. A-11 Offset pulse in fixed-pulse driving

ICPDAS I-8092F Software User Manual 92

A.2.5 Continuous Drive Pulse Output
When the continuous driving is performed, it will drive pulse output in a specific speed until stop
command or external stop signal is happened. The main application of continuous driving is:
home searching, teaching or speed control. Two stop commands are for stopping the continuous
driving. One is “decelerating stop”, and the other is “sudden stop”. Four input pins, IN3~IN0, of
each axis can be connected for external decelerating and sudden stop signals. Enable / disable,
active levels and mode setting are possible.And it is necessary to set the following parameters:
� Range: R
� Initial Speed: SV (PPS)
� Driving Speed: V (PPS)
� Acceleration: A (PPS/Sec)

Fig. A-12 Continuous driving

ICPDAS I-8092F Software User Manual 93

A.2.6 Constant Speed Driving
When the driving speed command set in I-8092F is lower than the initial speed, the acceleration
/deceleration will not be performed, instead, a constant speed driving starts. If the user wants to
perform the sudden stop when the home sensor or encoder Z-phase signal is active, it is better
not to perform the acceleration / deceleration driving, but the low-speed constant driving from the
beginning. For processing constant speed driving, the following parameters will be preset
accordingly.

� Range: R
� Initial Speed: SV
� Drive Speed: V (Just set one of SV and V can be attained the effect)
� Output Pulse Numbers: P (Only applicable for the fixed pulse driving)

Fig. A-13 Constant speed driving

ICPDAS I-8092F Software User Manual 94

A.3 Profile Acceleration/Deceleration Planning

According to the motion control, we should used acceleration / deceleration planning for
improving the capability of path planning and reducing the position error. The speed driving profile
in I-8092F can be configured as T-curve and S-curve acceleration / deceleration.

A.3.1 Trapezoidal Driving [Symmetric]
z T-curve Description

The linear acceleration / deceleration driving is also called the trapezoidal driving. About the
correlation parameters are: total displacement S, start speed SV, driving speed V, acceleration A.
By above the parameters we can plan the trapezoidal driving:

Acceleration equation:

TAASVV ×+= (1-1)

The time for the end of constant speed:

V
STM = (1-2)

The time for the start of constant speed:

TA
SVVA −

= (1-3)

The T-Curve acceleration / deceleration planning are shown in Fig. A-14.

Fig. A -14 Symmetric T-curve acc./dec. planning

Trapezoidal driving is starting from the initial speed to the designated drive speed. The
accelerating pulses will be counted, and the deceleration (automatic deceleration) starts from the

ICPDAS I-8092F Software User Manual 95

drive speed to initial speed once the remaining pulse numbers are less than the accelerating
pulse numbers.
Usually, the user should set the same acceleration and deceleration rates. For some cases, the
acceleration and deceleration can be set individually by setting the D1 of WR3 to 1. When the
deceleration is set individually in fixed pulse driving, the automatic deceleration will not be
performed, but the manual deceleration is required. The user should set the bit D1 of Register
WR3 as 1, and then use decelerating command (03h) to set the deceleration.
When performing the symmetric trapezoidal driving, the following parameters should be preset.

� Range: R
� Initial Speed: SV (PPS)
� Driving Speed: V (PPS)
� Acceleration: A (PPS/Sec)
� Output Pulse Number P

ICPDAS I-8092F Software User Manual 96

A.3.2 Trapezoidal Driving [Asymmetric]

When an object is to be moved using stacking equipment, the acceleration and the deceleration
of vertical transfer need to be changed since gravity acceleration is applied to the object. I-8092F
performs automatic deceleration in fixed pulse driving in the non-symmetric linear acceleration
where the acceleration where the acceleration and the deceleration are different. It is not
necessary to set a manual deceleration point by calculation in advance. Fig. A-15 shows the case
where the deceleration is greater than the acceleration and Fig. A-16 shows the case where the
acceleration is greater than the deceleration. In such asymmetric linear acceleration also, the
deceleration start point is calculated within the IC based on the number of output pulse P and
each rate parameter.

Fig. A-15 Asymmetric T-curve acc./dec. driving (A<D)

Fig. A-16 Asymmetric T-curve acc./dec. driving (A>D)

ICPDAS I-8092F Software User Manual 97

When performing the asymmetric trapezoidal driving, the following parameters should be set.

� Range: R
� Acceleration: A (PPS/Sec)
� Deceleration: D (PPS/Sec)
� Initial Speed : SV: (PPS)
� Driving Speed: V: (PPS)
� Output Pulse Number: P

Note: In the case of A>D, the following condition is applied to the ratio of the

 acceleration and the deceleration. 6104×
×>

VAD , where CLK=16 MHz

ICPDAS I-8092F Software User Manual 98

A.3.3 Triangle Prevention

The triangle prevention function prevents a triangle form in linear acceleration fixed
pulse driving even if the number of output plses is low. When the number of pulses that were
utilized at acceleration and deceleration exceeds 1/2 of the total number of output pulses during
acceleration, the IC (MCX312) stops acceleration and enters a constant speed mode. The
triangle prevention function is disabled at resetting. And set the WR6/D3 (AVTRI) bit of the
extension mode by setting command (60h) to 1 can enable the Function.

Fig. A-17 Triangle prevention of fixed pulse driving

P=2×(Pa+Pd)
P: Output pulse number
Pa: Number of pulses utilized at acceleration
Pd: Number of pulses utilized at deceleration

ICPDAS I-8092F Software User Manual 99

A.3.4 S-curve Acceleration / Deceleration [Symmetry]
z Complete S-curve Description

The complete S-Curve is composed of two two-degree velocity curves; if we set the time of the
acceleration is TA:
Velocity equation of segment (1):

2/,)(2 TAtCttV <= (1-4)

Velocity equation of segment (2):

2/,)()(2 TAttTACVtV >−−= (1-5)

Boundary condition:

0)0(',2/)2/(,0)0(=== VVTAVV (1-6)

By the BCs and then we can find that

2)(
2
TA

VC = (1-7)

Fig. A-18 Complete S-curve acc. planning

ICPDAS I-8092F Software User Manual 100

z Partial S-curve Description

Partial S-curve is composed of three segments (1, 2, 3): one straight line and two S-curve
lines. S-curve is the (1), (3) segments for S-curve acceleration, the straight line is (2) segment for
linear acceleration; the total motion time is defined TA , and the time of the linear acceleration
is)2(TSTA ×− . However there is the same acceleration value in the join of the three segments.

Velocity equation of segment (1):

TSttCtV <= ,)(2
1 (1-8)

Velocity equation of segment (2):

TSTAtTStCtV −<<= ,)(2 (1-9)

Velocity equation of segment (3):

TAtTSTAtTACVtV <<−−−= ,)()(2
1 (1-10)

The constant value 2C is the slope of the line:

TSTA

VSVC
2

2
2

−

−
= (1-11)

Boundary condition of the connection for (1), (2):

2)(' CTSV = (1-12)

We can find that
))]2(([2 21

TSTATSTS

VC
−×+

= (1-13)

Fig. A-19 Partial S-curve planning

In case of S-curve acceleration / deceleration driving, the acceleration profile is not linear. The

ICPDAS I-8092F Software User Manual 101

value of acceleration / deceleration is shaped as the trapezoid; see Fig. A-20. In acceleration,
there are three regions with different acceleration values. At the beginning, the acceleration
increase linearly from 0 to the specific value A with a specific rate of acceleration K, this shows
the driving speed increase parabolically in this region. Then, the driving speed increases in a
constant acceleration in region b. And, in section c, the acceleration decelerates linearly to 0 with
the rate of deceleration K. So the acceleration of S-curve includes regions a, b and c. In
deceleration, as same as acceleration, the driving speed decelerate parabolically in three regions
d, e and f.

Fig. A-20 S-Curve acceleration / deceleration driving

ICPDAS I-8092F Software User Manual 102

When the fixed pulse trapezoidal driving is performed, and also when the deceleration is
performed before the acceleration stops, the triangle driving profile is coming out. The prevention
of triangle driving profile in S-curve acceleration / deceleration driving will be discussed as follows.
If the initial speed is 0, and if the rate of acceleration is a, then the speed at time t in acceleration
region can be described as following.

 2)(KttV = (1-14)

Therefore, the total output pulse number p(t) from time 0 to t is the integrated of speed.
3

3

1)()(KtdttVtp ∫ == (1-15)

The total output pulse is

33 4)3/113/213/23/1(atat =×+++++ (1-16)

From (1-15), (1-16), when the output pulse in acceleration of S-curve is more than 1/12 of total
output pulse; it will stop increasing acceleration and start to decrease the acceleration value.

Fig. A-21 The rule of 1/12 of parabolic acceleration/deceleration.

ICPDAS I-8092F Software User Manual 103

A.4 Pulse Output Commands
A.4.1 2-Axes Interpolation

The I-8092F can be set for linear interpolation. To execute the linear interpolation, the user can,
according to the present point coordinates, set the finish point coordinates and the interpolation
command(s), as shows in Fig. A-22. For individual axis control, the command pulse number is
unsigned, and it is controlled by + direction command or - direction command. For interpolation
control, the command pulse number is signed. The resolution of linear interpolation is within ±0.5
LSB. We define the longest distance movement in interpolation is the “long axis”. And the other is
“short axis”. The long axis outputs an average pulse train. The driving pulse of the short axis
depends on the long axis and the relationship of the two axes. The range for each axis is a 24-bit
signed counter, from -223 ~ +223.

When performing the linear interpolation, the following parameters should be preset.
� Range: R
� Initial Speed: SV (PPS)
� Driving Speed: V (PPS)
� Acceleration: A (PPS/Sec)
� Acceleration rate:K(PPS/Sec2)
� Manual decelerating Point DP
� Finish Position FP

Fig. A-222 2-axes linear interpolation

ICPDAS I-8092F Software User Manual 104

A.4.2 Circular Interpolation

I-8092F can be selected for circular interpolation. The circular interpolation is starting from the
current position (start point). After setting the center point of circular, the finish position and the
CW or CCW direction, the user can start the circular interpolation. Note: The coordinates setting
value is the relative value of the start point coordinates. In Fig. A-23, it explains the definition of
CW and CCW circular interpolations. The CW circular interpolation is starting from the start point
to the finish position with a clockwise direction; the CCW circular interpolation is with a
counter-clockwise direction. When the finish point is set to (0, 0), a circle will come out.

When performing the circular linear interpolation, the following parameters should be preset.
� Range: R
� Initial Speed: SV (PPS)
� Driving Speed: V (PPS)
� Acceleration: A (PPS/Sec)
� Finish Position FP
� Manual decelerating Point DP
� Circular Center Position C

Fig. A-233 Circular interpolation

In Fig. A.24, it explains the long axis and the short axis. First, we define 8 quadrants in the

X-Y plane and put the numbers 0~7 to each quadrant. We find the absolute value of ax1 is
always larger than that of ax2 in quadrants 0, 3, 4 and 7, so we call ax1 is the long axis (ax2 is the
short axis) in these quadrants; in quadrants 1, 2, 5 and 6,ax2 is the long axis (ax1 is the short
axis). The short axis will output pulses regularly, and the long axis will output pulses depending
on the interpolation calculation.

ICPDAS I-8092F Software User Manual 105

Fig. A-24 The 0~7Quadrants in circular interpolation calculation

 Note: The calculation steps for the manual deceleration length of circular interpolation
 1. First judge the start point and finish point located on which quadrant
 2. Calculate the pulse number of the start point and finish point on the quadrant.
 (Take notice of the different motion direction (CW/CCW)).
 3. Calculate the whole quadrant numbers that passed through in the path planning.
 4. The result of step3+step4 is the total pulse number.
 5. Users can get the suitable multiple from the setting maximum speed, if the multiple
 = M, and then the real start speed: RSV＝SV×M, real driving speed: RV＝V×M, real
 acceleration: RA＝A×125×M
 By the equation: RSV＝RV＋RA×TA, and you can get the time and displacement for the
 acceleration area.
 6. If the pulse numbers of deceleration segment are same as the acceleration segment, it
 can figure easily:
 manual decelerating point＝total output pulse－output pulse during acceleration

ICPDAS I-8092F Software User Manual 106

 Fig. A-25 shows the circular interpolation of a real circle with radius 10000 in a trapezoidal
driving. The user should calculate the decelerating point before driving because the automatic
deceleration will not be active. In the figure, the circle tracks through all the 8 quadrants: 0~7. In
quadrant 0, Y axis is the short axis and it’s displace is about 10000 / 2=7071

 The total output pulses numbers of the short axis are 7010x8=56568. Furthermore, if the
initial speed is 500PPS, and will be accelerated to 20KPPS after 0.3 SEC, the acceleration will be
(20000-500) /0.3 = 65000PPS/SEC. And the output pulses during acceleration will be
(500+20000) x 0.3/2=3075. Thus, if we set the deceleration as same as the acceleration, the
manual decelerating point will be 56568-3075=53493.

Fig. A-25 Calculation of manual deceleration point for circular interpolation

 Note: 1. This formula cannot be used in the constant vector speed driving.
 2. In circular interpolation only manual deceleration in trapezoidal driving is available;
 the automatic deceleration in S-curve driving is not available.

ICPDAS I-8092F Software User Manual 107

A.4.3 Bit Pattern Interpolation

This interpolation driving receives interpolation data that is created by upper-level CPU and
transformed to bit patterns in a block of a predetermined size, and outputs interpolation pulses
consecutively at the specified drive speed. Every axis has 2 bit-data buffers for host CPU: one for
+ direction and the other for - direction. When performing the bit pattern interpolation, the host
CPU will write the designated interpolation data, for 2 or 3 axes, into I-8092F. If a bit in the bit
pattern data from CPU is “1”, I-8092F will output a pulse at the time unit; if it is “0”, I-8092F will not
output any pulse at the time unit. For example, if the user want to generate the X-Y profile (see
Fig. A-27), the host CPU must write a set of pattern into those specific registers ---- XPP: the +
direction register for X axis, XPM: the − direction register for X axis, YPP and YPM: the + and −
directions registers. With in the time unit, I-8092F will check the registers once and decide to
output a pulse or not depending on the bit pattern.

Fig. A-26 Bit pattern data for X-Y profile

 Stacking counter (SC) is a 2-bit counter. Its value is between 0 and 3, which can be read
from D14, 13 of register RR0. SC will decide which register for the data from the host CPU. The
initial value of SC is 0. So, when host CPU writes bit pattern data into BP1P or BP1M, the data
will be stored in SREG, and then, SC will count up to 1, and the next data from the host CPU will
be written into REG1. By this way, the REG2 becomes the register when SC=2. The host CPU is
not able to write any bit pattern data into MCX312 when SC=3.
 When the bit pattern interpolation pulse is outputting, D0 in SREG (Stack Register) will be
shifted output first, and then in the order of D1, D….When all of SREGs (Stack Registers) have
been shifted output, the data in REG1 will be shifted to SREG, the data in REG2 will be shifted to
REG1, and the SC will count down to 2. Then, the host CPU is able to write a new data into
MCX312 again.
 In order to make MCX312 output the bit pattern data continuously, the host CPU should
write the data into MCX312 before SC counts down to 0. MCX312 will output an interrupt
requirement signal to host CPU when SC counts down from 2 to 1.

ICPDAS I-8092F Software User Manual 108

Fig. A-27 Bit pattern data stack

� The limitation for the speed of bit pattern interpolation driving

The maximum pulse output speed is 4MHz in bit pattern interpolation mode. However, the
maximum speed will depend on the data update rate of host CPU if the bit pattern data are more
than 48bits. For example of the X and Y axes bit pattern interpolation, if the host CPU needs
100µsec to update new 16-bit data for X and Y axes. The maximum speed is
16/100µSEC=160KPPS.

� The ending of bit pattern interpolation
There are 2 ways can terminate the bit pattern interpolation.

(1) Write an ending code into buffer register of ax1. The bit pattern interpolation mode will be
finished, and stopped if the host CPU write “1” into both + and - directions buffer registers. When
the ending code is executed, the SC will become 0 automatically.

(2)The host CPU stops writing any command into I-8092F.
When SC=0, and when no other data is updated, I-8092F will stop outputting pulse. Then, the bit
pattern interpolation is finished.

� Utilizing the stop command to pause the interpolation
The interpolation driving will be paused if a sudden stop or decelerating stop command is written
into the master axis (ax1) which is executing the bit pattern interpolation. I-8092F will continue the
bit pattern interpolation if the host CPU enables the bit pattern interpolation again. If the host CPU
wants to finish the interpolation after writing stop command, all of the interpolation bit data in the
buffer must be cleared in using BP register

ICPDAS I-8092F Software User Manual 109

A.4.4 Continuous Interpolation

The continuous interpolation is executing a series of interpolation processes such as linear
interpolation＋circular interpolation＋linear interpolation … During the continuous interpolation,
the driving will not stop contrarily, The pulses are output continuously. When executing the
continuous interpolation, the host CPU has to write the next interpolation command into
MCX312 before the previous interpolation command is finished.

� Polling
If D9 (CNEXT) of register RR0 is 1, MCX312 is ready to accept the next interpolation
command. If D9 is 0, the host CPU is not able to write the next interpolation command into
MCX312. The D9 will become 1 only when the present command is executed. MCX312 will
not accept the next command, and the D9 is 0 if the present command has not been executed.
So, the standard procedure of continuous interpolation is first to write, and enable the
interpolation data and command, then check if D9 of RR0 is 1 or 0. And then, repeat writing
commands and checking D9. The flow chart is shown at the right side.

Fig. A-28 Continuous Interpolation by Polling Method

ICPDAS I-8092F Software User Manual 110

� Interrupt

 D14 of register WR5 is used for enable or disable the interrupt during the continuous
interpolation. After setting D14 of register WR5 to 1, the interrupt occurs. Pin INTN of
MCX314As will be on the Low level to interrupt the host CPU when D9 of register RR0
become 1. The INTN will be on the Hi level if the host CPU writes the next interpolation
command to I-8092F. If the interrupt clear command (3Dh) is written to command register, the
INTN signal will return to high-Z level from the Low level.

ICPDAS I-8092F Software User Manual 111

A.5 Automatic Home Search

 Home search is often used when the machine was first opened or the system was
occurred the alarm or error signal. Both of two above situations, user can take the home
search motion to let the machine return the operation origin.
 I-8092F provide the functions that automatically executes a home search sequence such
as high-speed near home search → low-speed home search → encoder Z-phase
search → offset driving without CPU intervention. Users should dispose the hardware signals
as the same as the below figure. The figure shown below illustrates the example of 1-axis
driving system. 2 axes can be assigned in the same way.

Fig. A-29 X-axis hardware signal disposition

ICPDAS I-8092F Software User Manual 112

A.6 Interrupt Control
A.6.1 Interrupt for Independent axis

A.6.2 Interrupt for Interpolation

ICPDAS I-8092F Software User Manual 113

A.7 I-8092F Function Library

We develop the simple but powerful high-level functions set application programming
interface (API) by using the specific command and data registers of MCX312. These libraries
are composed of motion and interpolation commands, status display, and I/O signal
management make programming your controller easy. Finally, all setup and motion control
functions are easily executed by calling into either a static or dynamic link library (DLL).
 The development procedure of the software library is written by eVC (eMbedded
Visual C++). After that, we use eVC to recompile the library become DLL (Dynamic Link
Library), and use MFC (Microsoft Foundation Class) to develop the HMI (Human Machine
Interface) for motion control. With inclusion of DLL and HMI, our package has the advantage
that users do not need to design complicated path planning and code function driver to control
the multi-axes motor. Finally, the capability and validity of the functions are tested by
experiment in a 2-axis machine.

Each function will be displayed in following format:
i8092_FUNCTION_NAME(cardNo, axis, parameter1, parameter2)
where cardNo is the module number of i8092; axis can be one axis or two axes. Users can
refer to Table 2-1 for more information.

WR0 Register
D15 D14~D12 D11 D10 D9 D8 D7~D0

RESET Y X

Axis X Y XY
Code 0x1 0x2 0x3

Name AXIS_X AXIS_Y AXIS_XY

ICPDAS I-8092F Software User Manual 114

A.7.1 Register management functions

The definition of the WRn, RRn registers are detail shown in appendix B.

Table A-3 Register management functions

Function Name Description
i8092_SET_COMMAND The command register (WR0) for 2-axes setting
i8092_SET_WR1 The mode register (WR1) for 2-axes setting
i8092_SET_WR2 The mode register (WR2) for 2-axes setting
i8092_SET_WR3 The mode register (WR3) for 2-axes setting
i8092_GET_WR4 The output register (WR4) setting
i8092_SET_WR5 The interpolation register (WR5) setting
i8092_GET_RR0 The main status register (RR0) getting
i8092_GET_RR1 The status register 1 (RR1) getting
i8092_GET_RR2 The status register 2 (RR2) getting
i8092_GET_RR3 The status register 3 (RR3) getting
i8092_GET_RR4 The input register (RR4) getting
i8092_GET_RR5 The input register (RR5) getting

i8092_COMMAND

Format:

void i8092_COMMAND(unsigned char cardNo, WORD axis, WORD cmd)

 Function:

Setting the command register (WR0) for 2-axes.

 Parameters:

cardNo is the board number.
axis is the motion axes, as shown in Table2-1.
cmd is the command code setting in the WR0 register. Available command codes

are shown in section A.8.

 Example: //Set all axes for axis switching.
 i8092_COMMAND(1, 0x3, 0xf);

ICPDAS I-8092F Software User Manual 115

i8092_SET_WR1

Format:

void i8092_SET_WR1(unsigned char cardNo, WORD axis, WORD data)

 Function:

Set the mode register (WR1) for 2-axes.

 Parameters:

cardNo is the board number.
axis is the motion axes, as shows in Table2-1.
data is the 32-bit hexadecimal value setting in the WR1 register.

 Example: //Set the X axis’s IN0 signal enabled and Hi active.

 i8092_SET_WR1(1, 0x1, 0x0003);

i8092_SET_WR2

 Format:

void i8092_SET_WR2(unsigned char cardNo, WORD axis, WORD data)

 Function:

Set the mode register (WR2) for 2-axes.

 Parameters:

cardNo is the board number.
data is the 32-bit hexadecimal value setting in the WR3 register.

 Example: //Set the all axes software limit enabled as comparing with the real position
 counter.

 i8092_SET_WR2(1, 0xf, 0x0023);

ICPDAS I-8092F Software User Manual 116

i8092_SET_WR3

 Format:

void i8092_SET_WR3(unsigned char cardNo, WORD axis, WORD data)

 Function:

Set the mode register (WR1) for 2-axes.

 Parameters:

cardNo is the board number.
axis is the motion axes, as shows in Table 2-1.
data is the 32-bit hexadecimal value setting in the WR3 register.

 Example: //Set the non-symmetry S-curve mode for x, y axes.

 i8092_SET_WR3(1, 0x7, 0x0007);

i8092_SET_WR4

 Format:

void i8092_SET_WR4(unsigned char cardNo, WORD data)

 Function:

Setting the mode register (WR1) for 2-axes.

 Parameters:

cardNo is the board number.
 axis is the motion axes, as shows in Table 2-1.

 data is the 32-bit hexadecimal value setting in the WR4 register.

 Example: //Set the 2-axes OUT1 signals of Hi active level.
 i8092_SET_WR4(1, 0xf, 0x0202);

ICPDAS I-8092F Software User Manual 117

i8092_SET_WR5

 Format:

void i8092_SET_WR5(unsigned char cardNo, WORD data)

 Function:

Set the interpolation register (WR5).

 Parameters:

cardNo is the board number.
 axis is the motion axes, as shows in Table 2-1.

 data is the 32-bit hexadecimal value setting in the WR5 register.

 Example: //Set the x, y axes of constant vector speed mode.
 i8092_SET_WR5(1, 0xf, 0x0300);

i8092_GET_RR0

 Format:

void i8092_GET_RR0(unsigned char cardNo, WORD axis)

 Function:

Get the main status register (RR0).

 Parameters:

cardNo is the board number.
 axis is the motion axes, as shows in Table 2-1.

 Example: //Get the x axis main status register.

 i8092_GET_RR0(1, 0x1);

ICPDAS I-8092F Software User Manual 118

i8092_GET_RR1

Format:

void i8092_GET_RR1(unsigned char cardNo, WORD axis)

Function:

Get the main status register (RR1).

Parameters:

cardNo is the board number.
 axis is the motion axes, as shows in Table 2-1.

Example: //Get the x axis status register 1.

 i8092_GET_RR1(1, 0x1);

i8092_GET_RR2

 Format:

void i8092_GET_RR2(unsigned char cardNo, WORD axis)

 Function:

Get the main status register (RR2).

 Parameters:

cardNo is the board number.
axis is the motion axes, as shows in Table 2-1.

 Example: //Get the x axis status register 2.

 i8092_GET_RR2(1, 0x1);

ICPDAS I-8092F Software User Manual 119

i8092_GET_RR3

 Format:

void i8092_GET_RR3(unsigned char cardNo, WORD axis)

 Function:

Get the main status register (RR3).

 Parameters:

cardNo is the board number.
 axis is the motion axes, as shows in Table 2-1.

 Example: //Get the x axis main status register.

 i8092_GET_RR0(1, 0x1);

i8092_GET_RR4

 Format:

void i8092_GET_RR4(unsigned char cardNo)

 Function:

Get the input register (RR4).

 Parameters:

cardNo is the board number.

 Example: //Get the input register 4.
 i8092_GET_RR4(1);

ICPDAS I-8092F Software User Manual 120

i8092_GET_RR5

 Format:

void i8092_GET_RR5(unsigned char cardNo, WORD data)

 Function:

Get the input register (RR5).

 Parameters:

cardNo is the board number.

 Example: //Get the input register 5.
 i8092_GET_RR5(1);

ICPDAS I-8092F Software User Manual 121

A.7.2 Functions for Initial Setting
We define some constant and structure for I8092 in i8092.h file.

Define card number and slot number
#define CARD1 1
#define CARD2 2
#define MAX_SLOT_NO 8

Define constant of decision
#define YES 1
#define NO 0
#define ON 1
#define OFF 0
#define SERVO_ON_flag 1
#define SERVO_OFF_flag 0

Define movement mode
#define ACCMODE 0
#define CONST2 1
#define CONST3 3

Interrupt factor
#define D_END 0x8000
#define C_STA 0X4000
#define C_END 0x2000
#define CP_GE 0x1000
#define CP_L 0x0800
#define CM_L 0x0400
#define CM_GE 0x0200
#define CI_INT 0x4001
#define BP_INT 0x8001
#define IDLE 0x0000

Transfer data type
#define BYTE unsigned char
#define WORD unsigned short int
#define DWORD unsigned long int

Command buffer
#define wr0 0x0
#define wr1 0x2
#define wr2 0x4
#define wr3 0x6
#define wr4 0x8
#define wr5 0xa
#define wr6 0xc
#define wr7 0xe

ICPDAS I-8092F Software User Manual 122

Status buffer
#define rr0 0x0
#define rr1 0x2
#define rr2 0x4
#define rr3 0x6
#define rr4 0x8
#define rr5 0xa
#define rr6 0xc
#define rr7 0xe

Define Axis
#define AXIS_X 0x1
#define AXIS_Y 0x2
#define AXIS_XY 0x3

Define drive mode
#define PFD 0x20
#define NFD 0x21
#define PCD 0x22
#define NCD 0x23

Table0-2 Function for Initial Setting

Function Name Description
i8092_PULSE_MODE Setting the ouput Pulse mode
i8092_SET_R Setting the parameter determining the

multiple of drive speed, acceleration /
deceleration and jerk.

i8092_GET_R Getting the global variable
i8092_HLMTP_LEVEL Setting the Active Level of the HLMTP

sensior
i8092_HLMTM_LEVEL Setting the Active Level of the HLMTM

sensior
i8092_SLMTP_MODE Setting the mode of the SLMTP
i8092_SLMTM_MODE Setting the mode of the SLMTM

i8092_COMPARE_LP Setting the COMP+/- registers value and
logic position

i8092_COMPARE_EP Setting the COMP+/- registers value and
Encoder position

i8092_RESET_CARD Resetting the motion card

ICPDAS I-8092F Software User Manual 123

I8092_PULSE_MODE

 Format:

void i8092_PULSE_MODE(unsigned char cardNo, WORD axis, WORD nMode)

Function:
The function can set the output pulse modes and explain in Sec 1.1.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.

 nMode is the value 0~3, as shows in the following table.

Waveform of input pulse Mode Value Direction
nPP / PULSE nPM / DIR

0 + PULSE LOW CW /
CCW 1 - LOW PULSE

2 + PULSE+ LOW
3 - PULSE+ HIGH
4 + PULSE- LOW

PULSE
/ DIR

5 - PULSE HIGH

 Example: //It sets that choosing all axes with CW/CCW (Dir.+) mode.
 i8092_SET_PULSE_MODE(1, 0xf, 2);

i8092_SET_R

 Format:

void i8092_SET_R(unsigned char cardNo, WORD axis, DWORD data)

Function:
”R” means “Range”, is the parameter determining the multiple of drive speed,

 acceleration / deceleration and jerk. The calculation of the multiple is shown
 in the following formula:

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.

 Example: i8092_SET_R(1, 0xf, 8000000);

 Note: If the maximum value of parameter for setting the drive speed (V) is 8000, and the
 drive speed is set 40KPPS. The user can set V=8000 and R=1600000. Because 40K is 5
 times of 8000, we set the R=8000000/5=1600000.

ICPDAS I-8092F Software User Manual 124

i8092_GET_R

 Format:

DWORD i8092_GET_R(unsigned char cardNo, WORD axis)

 Function:

Get the range value from the global variable.

 Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1.

 Example: //Get the range value.

 i8092_GET_R(1, 0x1);

i8092_HLMTP_LEVEL
i8092_HLMTM_LEVEL

 Format:

void i8092_HLMTP_LEVEL(unsigned char cardNo, WORD axis, WORD nLevel)
void i8092_HLMTM_LEVEL(unsigned char cardNo, WORD axis, WORD nLevel)

 Function:

Set the logical level of +/- direction hardware limit input signal.

 Parameters:

cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1.
nLevel is the active level, nLevel=0: Low active, nLevel =1: Hi active.
Other values are invalid.

 Example: //Set the positive direction hardware limit as Low active for 2-axes.

 i8092_HLMTP(1, 0xf, 0);

ICPDAS I-8092F Software User Manual 125

i8092_SLMTP_MODE
i8092_SLMTM_MODE

 Format:

void i8092_SLMTP_MODE(unsigned char cardNo, WORD axis, WORD nMode)
void i8092_SLMTM_MODE(unsigned char cardNo, WORD axis, WORD nMode)

 Function:

Set the +/- direction software limit.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
nMode n=0: Enable; n=1: Disable

 Example: //Enable the positive direction software limit for 2 axes.

 i8092_SLMTP_LEVEL(1, 0x3, 0);

i8092_COMPARE_LP

 Format:

void i8092_COMPARE_LP (unsigned char cardNo, WORD axis)

Function:
The function selects the logical position counter (LP) as the comparing target of
COMP+/- registers.

 Parameters:

cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1,

 Example: //Set the comparing target to LP for all axes.
 i8092_COMPARE_LP(1, 0x3);

ICPDAS I-8092F Software User Manual 126

i8092_COMPARE_EP

 Format:

void i8092_COMPARE_EP (unsigned char cardNo, WORD axis)

Function:
The function selects the real position counter (EP) as the comparing target of

COMP+/- registers.

 Parameters:

cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1,

 Example: //Set the comparing target to EP for all axes.
 i8092_COMPARE_EP(1, 0x3);

i8092_RESET_CARD

Format:

void i8092_RESET_CARD(void)

Function:
Command for resetting the motion card.

Parameter:

None.

 Example: //Set the reset command.
 i8092_RESET_CARD();

 Note: When the bit (WR0/D15) is set to 1, but others are 0, the IC will be reset after
command writing.

ICPDAS I-8092F Software User Manual 127

A.7.3 Motion Status Management Functions
 The logic position counter is counting the driving pulses in MCX312. When one +
direction plus is outputting, the counter will count up 1; When one - direction pulse is
outputting, the counter will count-down 1. The real position counter will count input
pulse numbers from external encoder. The type of input pulse can be either A/B
quadrature pulse type or Up / Down pulse(CW/CCW) type (See Chapter 2.6.3). Host CPU
can read or write these two counters any time. The counters are signed 32 bits, and the
counting range is between -231 ~ +231.

Table A-4 Motion Status Management Functions

Function Name Description
i8092_SET_LP The logic position counter setting
i8092_SET_EP The Real position counter setting
i8092_GET_LP The logic position counter setting
i8092_GET_EP Read the Real position counter
i8092_GET_CV Read the current driving speed
i8092_GET_CA Read the current acceleration / deceleration
i8092_SET_CP Setting the positive direction software limit
i8092_SET_CM Setting the negative direction software limit
I8092_VRING_ENABLE Setting the position counter variable ring
I8092_VRING_DISABLE Disable the position counter variable ring
i8092_AVTRI_ENABLE Setting Triangle prevention of fixed pulse driving
i8092_AVTRI_DISABLE Disable Triangle prevention of fixed pulse driving

ICPDAS I-8092F Software User Manual 128

Fig. A-29 Management for Position Register and Software Limit

i8092_SET_LP

 Format:

void i8092_SET_LP(unsigned char CardNo, WORD axis, long dwdata)

 Function:

Set the logic position counter, it can be set zero to reset the counter values.

 Parameters:

cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1, only set for single axis.
dwdata: input value for logic position counter. Data range: -231~+231.

 Example: //Clear the logic position counter value.
 i8092_SET_LP(1, 0x1, 0);
 i8092_SET_LP(1, 0x2, 0)

ICPDAS I-8092F Software User Manual 129

i8092_SET_EP

 Format:

void i8092_SET_EP(unsigned char CardNo, WORD axis, long dwdata)

 Function:

Set the logic position counter, it can be set zero to reset the counter values.

 Parameters:

cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1, only set for single axis.

 dwdata: input value for real position counter, Data range: -231~+231.

 Example: //Clear the logic position counter value.
 i8092_SET_EP(1, 0x1, 0); i8092_SET_EP(1, 0x2, 0);

long i8092_GET_LP

Format:

long i8092_GET_LP(unsigned char CardNo, WORD axis)

 Function:

The function can read he current value of logic position counter, and it will be set in
read registers RR6 and RR7.

 Parameters:

cardNo is the board number.
 axis is the motion axis code, as shows in Table 2-1, only set for single axis.

 Example: //Read the logic position counter for the X, Y axes.
 i8092_GET_LP(1, 0x1); i8092_GET_LP(1, 0x2);

ICPDAS I-8092F Software User Manual 130

i8092_GET_EP

Format:

long i8092_GET_EP(unsigned char CardNo, WORD axis)

Function:
The function can read the current value of real position counter and it will be set in
read registers RR6 and RR7.

 Parameters:

cardNo is the board number.
 axis is the motion axis code, as shows in Table 2-1, only set for single axis.

 Example: //Read the real position counter for the X, Y axes.
 i8092_GET_EP(1, 0x1); i8092_GET_EP(1, 0x2);

i8092_GET_CV

Format:

WORD i8092_GET_CV(unsigned char CardNo, WORD axis)

Function:
The function can read the current drive speed, and it will be set in read registers RR6
and RR7. When the driving stops, the value becomes 0. The date value will increase
from the setting value of start speed (SV) to the setting value of drive speed (V).

Parameters:

cardNo is the board number.
 axis is the motion axis code, as shows in Table 2-1, only set for single axis.

 Example: //Read the current velocity for the X, Y axes.
 i8092_GET_CV(1, 0x1);

i8092_GET_CV(1, 0x2);

ICPDAS I-8092F Software User Manual 131

i8092_GET_CA

Format:

WORD i8092_GET_CA(unsigned char CardNo, WORD axis)

Function:
The function can read the current drive acceleration will be set in read registers
 RR6 and RR7. When the driving stops, the value becomes 0. The data value
 will increase from zero to the setting value of drive acceleration (A).

Parameters:

cardNo is the board number.
 axis is the motion axis code, as shows in Table 2-1, only set for single axis.

Example: //Read the current acceleration for the X, Y axes.

 i8092_READ_CA(1, 0x1);
i8092_READ_CA(1, 0x2);

i8092_SET_CP
i8092_SET_CM

Format:

void i8092_SET_CP(unsigned char CardNo, WORD axis, long dwdata)
void i8092_SET_CM(unsigned char CardNo, WORD axis, long dwdata)

Function:

Set the COMP+/- registers value to be the positive direction software limit.

Parameters:
cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1,
dwdata is the COMP+ register value. Data range: -231~+231.

 Example: //Set the positive direction software limit to be 100000 for the X, Y axes.
 i8092_SET_COMPP(1, 0x3, 100000);

//Set the positive direction software limit to be 100000 for the X, Y axes.
 i8092_SET_COMPM(1, 0x3, 100000);

ICPDAS I-8092F Software User Manual 132

i8092_VRING_ENABLE
i8092_VRING_DISABLE

 Format:

void i8092_VRING_ENABLE(unsigned char cardNo, WORD axis,
DWORD nVRing)

 void i8092_VRING_DISABLE(unsigned char cardNo, WORD axis)

 Function:
Enable/disable the setting of any value as the maximum value. This function is

 useful for managing the position of the axis in circular motions that return to the
 home position after one rotation, rather than linear motions.

Parameter:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1,
 nVRing is the value of the COMP+/COMP- registers. Data range: -231~+231.

Example: //For instance, set as follows for a rotation axis that rotates one cycle with
 //10000 pulses. To enable the position variable ring function, And set 9999 in
 //the COMP+/- registers as the maximum value of the logical position counter.

i8092_VRING_ENABLE(1, 0xf, 1, 9999);

Fig. A-30 Operation of position counter ring maximum value 9999

 Note: 1. The variable ring function enable/disable is set for each axis, however, a
logical position counter and a real position counter cannot be enabled/disables
individually.

 2. If a variable ring function is enabled, a software limit function cannot be used.

ICPDAS I-8092F Software User Manual 133

i8092_AVTRI_ENABLE

Format: void i8092_AVTRI_ENABLE(BYTE cardNo, WORD axis)

Function:

This function prevents a triangle form in linear acceleration (T-curve) fixed pulse driving
even if the number of output pulses is low.

Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1,

Example:
i8092_ AVTRI_ENABLE(1, AXIS_X);

//set the X axis of module 1 not to generate a triangle form in its speed profile.

i8092_AVTRI_DISABLE

Format: void i8092_AVTRI_DISABLE(BYTE cardNo, WORD axis)

Function:

This function disable the function that prevents a triangle form in linear acceleration
(T-curve) fixed pulse driving even if the number of output pulses is low.

Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1,

Example:

i8092_ AVTRI_DISABLE(1, AXIS_X);
//enable the X axis of module 1 to generate a triangle form in its
//speed profile if the pulse number for output is too low.

ICPDAS I-8092F Software User Manual 134

A.7.4 Basic Motion Command Functions
The basic motion commands of I-8092F are listed in Table A-5. They are including the

setting for range (R), multiple (M), start speed (SV), driving speed (V), acceleration (A),
deceleration (D), acceleration rate (K), output pulse (P), T-Curve acceleration / deceleration,
and S-Curve acceleration / deceleration. The whole command procedures should be set with
the initial command registers. After setting correlation parameters, the CPU sends command
or data through MCX312; finally, command enters in the logic-position-counter, and then
sends to the driver to control the motor.

Table A-5 Basic Motion Command Functions

 Function Name Description
i8092_SET_SV Initial speed setting
i8092_SET_V Drive speed setting
i8092_SET_A Acceleration setting
i8092_SET_D Deceleration setting
i8092_SET_K Acceleration rate setting
i8092_SET_L Deceleration rate setting
i8092_SET_PULSE Set output pulse number
i8092_SET_AO Acceleration Counter Offsetting
i8092_SET_TCURVE T-Curve acc./dec. mode enabled
i8092_SET_SCURVE S-Curve acc./dec. mode enabled
i8092_SET_AUTODEC Auto deceleration setting
i8092_SET_MANDEC Manual deceleration setting
i8092_DRV_FDRIVE Fixed pulse drive mode setting
i8092_DRV_CDRIVE Continuous drive mode setting
i8092_SET_SYMMETRY Symmetric T/S-curve Acc/Dec setting
i8092_SET_ASYMMETRY Asymmetric T/S-curve Acc/Dec setting
i8092_STOP_WAIT Drive and wait for stopping
i8092_STOP_SLOWLY Slow-down stop
i8092_STOP_SUDDENLY Emergent stop
i8092_DRV_HOLD Holding for later driving
i8092_DRV_START Drive holding release (starting motion)

ICPDAS I-8092F Software User Manual 135

i8092_SET_SV

 Format:

void i8092_SET_SV(unsigned cardNo, WORD axis, WORD data)

Function:
This function can set the start speed. If the stop type is slow-down stop, the motion
curve will be decelerating to the start speed and then stop. Set the start speed is SV,
the multiple is M, and then the driving start is:

Driving start speed(PPS)＝SV×M

 Parameters:
cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
data is the value of SV, data range is 1~8000, other values are invalid.

 Example: //Set the start velocity 500 (PPS) for X axis.

 i8092_SET_SV(1, 0x1, 500);

i8092_SET_V

 Format:

void i8092_SET_V(unsigned char cardNo, WORD axis, WORD data)

Function:
The function is setting the speed of constant speed period in trapezoidal driving. In
constant speed driving, the drive speed is the initial speed. The drive speed
calculation is shown in the following formula:

Driving Speed(PPS)＝V×M

 Parameters:
cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1.
data is value of acceleration, the range is 1~8000, other values are invalid.

 Example: //Set the driving velocity 1000 (PPS) for X axis.

 i8092_SET_V(1, 0x1, 1000);

 Note: 1. If the setting drive speed is lower than the initial speed, the acceleration /
 deceleration will not be performed, and the driving is constant speed. During the encoder
 Z-phase searching (at a low-peed driving), the user want to perform the sudden stop once
 the Z-phase is detected, the drive speed should be set lower than the initial speed. Drive
 speed can be altered during the driving. When the drive speed of next constant
 speed period is set, the acceleration / deceleration will be performed to reach the
 new setting drive speed, then a constant speed driving starts.

ICPDAS I-8092F Software User Manual 136

i8092_SET_A

 Format:

void i8092_SET_A(unsigned char cardNo, WORD axis, WORD data)

 Function:

The function is setting the acceleration or deceleration of the trapezoidal driving. For
S-curve acceleration / deceleration, it shows the linear acceleration until a specific
value (A) driving. The acceleration calculation is shown in the following formula:

Driving Acceleration(PPS/Sec)＝A×125×M

 Parameters:

cardNo is the board number.
axis is the motion axes code/name, as shows in Table 2-1.
data is value of acceleration, it’s range is 1~8000, other values are invalid.

 Example: //Set the acceleration 80 (PPS/Sec) for X axis.

 i8092_SET_A(1, 0x1, 80);

 Note: 2. In fixed pulse S-curve acceleration / deceleration driving, there is no way to
 change the drive speed during the driving. In continuous S-curve acceleration /
 deceleration driving, the S-curve profile cannot be exactly tracked if the speed
 alterations during the acceleration/deceleration. It is better to change the drive speed
 in the constant speed period.

ICPDAS I-8092F Software User Manual 137

i8092_SET_D

 Format:

void i8092_SET_D(unsigned char cardNo, WORD axis, WORD data)

 Function:

The function use when acceleration/deceleration is set individually, “D” is the
parameter determining the deceleration of the trapezoidal driving. For S-curve
acceleration / deceleration, the designated deceleration can be set until a specific
value (D) is driving. The deceleration calculation is shown in the following formula:

Driving Deceleration(PPS/Sec)＝D×125×M

 Parameters:
cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
data is the value of deceleration, it’s range is 1~8000, other values are invalid.

 Example: //Set the deceleration 80 (PPS/Sec) for X axis.

 i8092_SET_D(1, 0x1, 80);

i8092_SET_K

 Format:

void i8092_SET_K(int cardNo, WORD axis, WORD data)

 Function:

The function is setting the value of acceleraton rate (jerk), in a time unit, of S-curve
Acc/Dec motion. The jerk calculation is shown in the following formula:

Jerk (PPS/Sec2)＝(62.5×106 / K)×M

 Parameters:
cardNo is the board number.

 axis is the motion axis code/name, as shows in Table 2-1.
 data is the value of the acceleration rate, it’s range is 1~65535.

 Example: //Set the jerk 625 (PPS/Sec2) for the X axis.

 i8092_SET_K(1, 0x1, 625);

 Note: For K=65535 to 1
When Multiple = 1, 954 PPS/SEC2 ~ 62.5 x 106 PPS/SEC2

 When Multiple = 500, 477 x 103 PPS/SEC2 ~ 31.25 109 PPS/SEC2
 *In this manual, jerk is defined the increasing / decreasing rate of acceleration /

deceleration in a time unit. However, jerk should cover the decreasing rate of acceleration
and increasing rate of acceleration.

ICPDAS I-8092F Software User Manual 138

i8092_SET_L

 Format:

void i8092_SET_L(int cardNo, WORD axis, WORD data)

 Function:

The function is setting the deceleration rate (jerk), in a time unit, of S-curve Acc/Dec
motion. The jerk calculation is shown in the following formula:

Jerk (PPS/Sec2)＝(62.5×106 / K)×M

 Parameters:
cardNo is the board number.

 axis is the motion axis code/name, as shows in Table 2-1.
 data is the value of the acceleration rate, it’s range is 1~65535.

 Example: //Set the jerk 625 (PPS/Sec2) for the X axis.

 i8092_SET_L(1, 0x1, 625);

i8092_SET_PULSE

 Format:

void i8092_SET_PULSE(unsigned char cardNo, WORD axis, DWORD data)

 Function:

The function is setting total output pulse numbers in fixed pulse driving. The value is
absolute, unsigned number. The output pulse numbers can be changed during the
driving.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
data is the value of the pulse, it’s range is 0~268435455, other values are invalid.

 Example: //Set the driving pulse number (final point) 10000 for the X axis.

 i8092_SET_PULSE(1, 0x1, 10000);

 Note: For K=65535 to 1
When Multiple = 1, 954 PPS/SEC2 ~ 62.5 x 106 PPS/SEC2

 When Multiple = 500, 477 x 103 PPS/SEC2 ~ 31.25 109 PPS/SEC2

ICPDAS I-8092F Software User Manual 139

i8092_SET_AO

Format:
 void i8092_SET_AO(unsigned char cardNo, WORD axis, WORD data)

Function:

The function is executing the acceleration counter offset. It is often used while the
machine is using stepping motor. It can avoid the overshoot for high speed
deceleration.

Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
data is the value of the deceleration, it’s range is 0~65535. Other values are invalid.

Example:

i8092_SET_AO(1, 0x1, 200);

i8092_SET_AUTODEC

 Format:

void i8092_SET_AUTODEC(unsigned char cardNo, WORD axis)

 Function:

Automatic deceleration setting.

 Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1.

 Example://Enable the automatic deceleration for 2-axes.
 i8092_SET_AUTODEC(1, 0xf);

 Note: The function is useless in circular interpolation for T-curve deceleration.

ICPDAS I-8092F Software User Manual 140

i8092_SET_MANDEC

 Format:

void i8092_SET_MANDEC(unsigned char cardNo, WORD axis, WORD dp)

Function:
Set the manual deceleration point in fixed pulse acceleration/deceleration driving or
interpolation motion when the manual deceleration mode is engaged. In manual
deceleration mode, the user can set the bit D0 of WR3 register to 1.
The decelerating point calculates as :

Manual Decelerating Point = Output Pulse Numbers - Pulse Number for Deceleration

 Parameters:
cardNo is the board number.

 axis is the motion axis code/name, as shows in Table 2-1.

 Example: //Set the manual deceleration point 8000 for the XY axes motion.
 i8092_SET_MANDEC(1, 0x3, 8000);

i8092_DRV_FDRIVE

 Format:

void i8092_DRV_FDRIVE(unsigned char cardNo, WORD axis, WORD nDir)

 Function:

Set fixed-pulse drive.

 Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1.

 nDir is the direction of the motion. nDir = 0, positive; nDir = 1, negative

 Example: //Set the negative fixed pulse drive.

 i8092_DRV_FDRIVE(1, 0x3, 1);

 Note: The suitable time for setting manual deceleration point
 1. Asymmetry S-curve acceleration/deceleration
 2. Circular interpolation

ICPDAS I-8092F Software User Manual 141

i8092_DRV_CDRIVE

 Format:

void i8092_DRV_CDRIVE(unsigned char cardNo, WORD axis, WORD nDir)

 Function:

Set continuous drive.

 Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1.

 nDir is the direction of the motion. nDir = 0, positive; nDir = 1, negative

 Example: //Set the positive continuous drive.

 i8092_DRV_CDRIVE(1, 0x3, 0);

i8092_SET_SYMMETRY

Format:

void i8092_SET_SYMMETRY(unsigned char cardNo, WORD axis)

Function:

Set symmetry acceleration/deceleration.

Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1.

Example: //Set the symmetry acc./dec. motion for 2-axes.
 i8092_SET_SYMMETRY(1, 0xf);

i8092_SET_ASYMMETRY

Format:

void i8092_SET_ASYMMETRY(unsigned char cardNo, WORD axis)

Function:
Set asymmetry acceleration/deceleration

Parameters:

cardNo is the board number.
 axis is the motion axis code/name, as shows in Table 2-1.

Example: //Set the asymmetry acc./dec. motion for 2-axes.

 i8092_SET_ASYMMETRY(1, 0xf);

ICPDAS I-8092F Software User Manual 142

i8092_STOP_SLOWLY

Format:

void i8092_STOP_SLOWLY(unsigned char cardNo, WORD axis)

Function:
Motion command for stopping slowly.

Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.

Example: //Stop slowly command for 2-axes.

 i8092_STOP_SLOWLY(1, 0xf);

i8092_STOP_SUDDENLY

Format:

void i8092_STOP_SUDDENLY(unsigned char cardNo, WORD axis)

Function:
Motion command for stopping suddenly.

Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.

Example: //Stop suddenly command for 2-axes.

 i8092_STOP_SUDDENLY(1, 0xf);

i8092_DRV_HOLD

Format:

void i8092_DRV_HOLD(unsigned char cardNo, WORD axis)

Function:
Set holding for drive starting.

Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.

Example:

i8092_DRV_HOLD(1, 0xf);

ICPDAS I-8092F Software User Manual 143

i8092_DRV_START

Format:

void i8092_DRV_START(unsigned char cardNo, WORD axis)

Function:

Drive status holding release/finishing status clearing setting.

Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.

Example:

i8092_DRV_SATRT(1, 0xf);

Fig. A-31 Symmetry T-curve acc/dec

Demo Program: T/S-curve acc/dec motion [Symmetry]
Parameters: cardNo=1, motion axes=0x3 (AXIS_XY)

i8092_SET_R(cardNo, 0x3, 800000); // R=800000, Multiple=10
i8092_SET_TCURVE(cardNo, 0x3); // Set T-Curve Mode
i8092_SET_SYMMETRY(cardNo, 0x3); // Set symmetry mode for X, Y axes
i8092_SET_SV(cardNo, 0x3, 100); // SV=100,Iinitial Speed=1000 (PPS)
i8092_SET_V(cardNo, 0x3, 1000); // V=1000, Drive Speed=10000 (PPS)
i8092_SET_A(cardNo, 0x3, 80); // A=80, Acceleration=100K (PPS/Sec)
i8092_SET_PULSE(cardNo, 0x3, 25000); // Driving Pulse=25000
i8092_DRV_HOLD(card, 0x3); // Holding for driving starting
i8092_DRV_FDRIVE(cardNo, 0x3, 0); // X-Axis Positive Fixed Pulse Drive
i8092_DRV_START(card, 0x3); // Holding Release

ICPDAS I-8092F Software User Manual 144

Fig. A-41 Asymmetric S-curve acc/dec

Demo Program: T/S-curve acc/dec motion [Asymmetry]
Parameters: cardNo=1, motion axes=0x3 (AXIS_XY)

i8092_SET_R(cardNo, 0x3, 8000000); // R=800000, Multiple=10
i8092_SET_SCURVE(cardNo, 0x3); // Set S-Curve Mode
i8092_SET_ASYMMETRY(cardNo, 0x3); // Set Non-Symmetry Mode
i8092_SET_SV(cardNo, 0x3, 100); // SV=100,Iinitial Speed=1000 (PPS)
i8092_SET_V(cardNo, 0x3, 1000); // V=1000, Drive Speed=10000 (PPS)
i8092_SET_A(cardNo, 0x3, 800); // A=800, Acceleration=1000K (PPS/Sec)
i8092_SET_D(cardNo, 0x3, 80) // D=80, Deceleration=100K (PPS/Sec)
i8092_SET_K(cardNo, 0x3, 1250); // K=1250, Jerk=500K (PPS/Sec2)
i8092_SET_L(cardNo, 0x3, 125); // L=125, Decelerating Rate=50K (PPS/Sec2)
i8092_SET_PULSE(cardNo, 0x3, 50000); // X-Axis Driving Pulse=50000
i8092_DRV_HOLD(card, 0x3); // Holding for driving starting
i8092_DRV_FDRIVE(cardNo, 0x1, 1); // X-Axis Negative Fixed Pulse Drive
i8092_DRV_FDRIVE(cardNo, 0x2, 0); // Y-Axis Positive Fixed Pulse Drive
i8092_DRV_START(card, 0x3); // Holding Release

ICPDAS I-8092F Software User Manual 145

A.7.5 Interpolation Functions

The below figure is the MCX312 Interpolation functional diagram. It consists of same
functioned X and Y axes control sections and interpolation counting sections.

Fig. A-32 MCX312 Functional Block Diagram

Table A-6 Interpolation Functions

Function Name Description
i8092_MOTION_TYPE 2 or 3-axes constant vector speed setting
i8092_SET_FINISH Interpolation’s finish point setting
i8092_LINE2D 2 axes linear interpolation mode
i8092_SET_CENTER Circular interpolation’s center setting
i8092_ARC_CW CW direction arc interpolation mode
i8092_ARC_CCW CCW direction arc interpolation mode
i8092_CIRCLE_CW CW direction circle interpolation mode
i8092_CIRCLE_CCW CCW direction circle interpolation mode
i8092_NEXT_WAIT Wait for next interpolation command
i8092_BP_ENABLE Bit pattern interpolation enabled
i8092_BP_DISABLE Bit pattern interpolation disabled
i8092_BP_CLEAR Bit pattern interpolation cleared
i8092_BP_STACK Bit pattern data stack
i8092_BP_WAIT Wait for bit pattern data write

ICPDAS I-8092F Software User Manual 146

i8092_MOTION_TYPE

Format:

void i8092_MOTION_TYPE(unsigned char CardNo, WORD type)

Function:

Set 2 -axes constant vector speed mode

Parameter:

cardNo is the board number.
 type is the parameter setting the constant vector speed modes.
 type=0, constant vector speed mode is invalid;
 type=1, 2-axes constant vector speed mode.

 Example: //Set the 2-axes constant vector mode.
 i8092_MOTION_TYPE(1, 1);

i8092_SET_FINISH

Format:

void i8092_SET_FINISH(BYTE cardNo, WORD axis, long data)

Function:

Set the value of the finish point for motion (in Pulses).

Parameter:

cardNo Module number.
axis axis or axes. Please refer to Table 2-1.
data Pulse number. Range : -2,147,483,648 ~ +2,147,483,648

Example: //set the value of finish point.

 i8092_SET_FINISH(1, 1, 1000);

ICPDAS I-8092F Software User Manual 147

Linear interpolation functions

About the linear interpolation functions are designed in three modes: constant (tangential)
speed, T-curve (tangential) acceleration / deceleration, S-curve (tangential) acceleration /
deceleration.
Users need to set the following parameters:

z Range: R
z Initial Speed: SV (PPS)
z Driving Speed: V (PPS)
z Acceleration: A (PPS/Sec)
z Finish Point: FP (Pulses)

i8092_LINE_2D

 Format:

void i8092_LINE_2D(umsigned char CardNo, long fp1, long fp2)

 Function:

Two axes linear interpolation.

 Parameter:

cardNo is the board number.
 fp1: finish point for axis1, data range is -8388608~8388607.
 fp2: finish point for axis2, data range is -8388608~8388607.

 Example:

i8092_LINE2D(1, 12000, 10000);

Fig. A-33 2-axes linear interpolation

ICPDAS I-8092F Software User Manual 148

Circular Interpolation Functions

i8092_ARC_CW

Format:

void i8092_ARC_CW(unsigned char cardNo, long cp1, long cp2,
long fp1, long fp2)

Function:
CW direction circular interpolation.

Parameters:

cardNo is the board number.
 cp1 is the center for axis1.
 cp2 is the center for axis2.
 fp1 is the finish point for axis1.
 fp2 is the finish point for axis2.

Example:

i8092_ARC_CW(1, -5000, -5000, -10000, -10000);

Fig. A-34 CW circular interpolation

Demo Program: linear interpolation
Parameters: cardNo=1

// 2-Axis Linear Interpolation
i8092_MOTION_TYPE(cardNo, CONST2); // Set 2-Axes Constant Vector Speed Mode
i8092_SET_R(CardNo, Card[cardNo].ax1, 8000000);
i8092_SET_R(cardNo,Card[cardNo].ax2, 8000000*1414L/1000L);
i8092_SET_V(cardNo, Card[cardNo].ax1, 1000);
i8092_LINE_2D(cardNo,3000,4000); // 2-Axes Interpolation

ICPDAS I-8092F Software User Manual 149

i8092_ARC_CCW

Format:

void i8092_ARC_CCW(unsigned char cardNo, long cp1, long cp2,
long fp1,long fp2)

Function:

CW direction circular interpolation.

Parameters:

cardNo is the board number.
 cp1 is the center for axis1.
 cp2 is the center for axis2.
 fp1 is the finish point for axis1.
 fp2 is the finish point for axis2.

Example:
i8092_ARC_CCW(1, -5000, -5000, -10000, -10000);

Fig. A-35 CCW circular interpolation

ICPDAS I-8092F Software User Manual 150

i8092_CIRCLE_CW

Format:

void i8092_CIRCLE_CW(unsigned char cardNo, long cp1, long cp2)

Function:

CW direction circular interpolation.

Parameters:

cardNo is the board number.
cp1 is the center for axis1.
cp2 is the center for axis2.
fp1 is the finish point for axis1.
fp2 is the finish point for axis2.

Example:

i8092_CIRCLE_CW(1, 0, 10000);

i8092_CIRCLE_CCW

 Format:

void i8092_CIRCLE_CCW(unsigned char cardNo, long cp1, long cp2)

 Function:

CW direction circular interpolation for constant speed.

 Parameters:

cardNo is the board number.
cp1 is the center for axis1.
cp2 is the center for axis2.
fp1 is the finish point for axis1.
fp2 is the finish point for axis2.

 Example:

i8092_CIRCLE_CCW(1, 0, 10000);

� Note: The function is convenient to profile for a total circle, it is accounting to the
i8092_ARC_CCW function.

 Note: The function is convenient to profile for a total circle, it is accounting to the
i8092_ARC_CW function.

ICPDAS I-8092F Software User Manual 151

i8092_NEXT_WAIT

 Format:

void i8092_NEXT_WAIT(unsigned char cardNo)

 Function:

Using to waiting for the command of the next segment.

 Parameters:

cardNo is the board number.

 Example:
i8092_NEXT_WAIT(1);

Continuous interpolation

 User can use the linear and circular interpolation to implement a specific curve motion.
There are two ways to implement: polling and interrupt. Fig. A-48 shows an example of
executing continuous beginning at point (0,0) form segment 1, 2, 3… to the segment 8. In
segment 1, 3, 5, and 7, the linear interpolation will be executed; in segment 2, 4, 6, and 8, the
circular interpolation will be executed, and the track is a quadrant circle with radius 1500. The
interpolation driving is at a constant vector speed: 1500 PPS.

Fig. A-36 Continuous interpolation

ICPDAS I-8092F Software User Manual 152

Demo Program: Constant Speed Continuous Interpolation
Parameters: CradNo=1

i8092_SET_R(cardNo, Card[cardNo].ax1, 800000);
i8092_SET_R(cardNo, Card[cardNo].ax2, 800000* 1414L/1000L);
i8092_MOTION_TYPE(cardNo, 0x3, 1); // 2-axes constant vector speed
i8092_SET_V(cardNo, Card[cardNo].ax1, 1500); // Set V = SV

i8092_LINE_2D(cardNo, 4500, 0); // Segment 1
i8092_NEXT_WAIT(cardNo); // Wait next command

i8092_ARC_CCW(cardNo, 0, 1500, 1500, 1500); // Segment 2
i8092_NEXT_WAIT(cardNo); // Wait next command

i8092_LINE_2D(cardNo, 0, 1500); // Segment 3
i8092_NEXT_WAIT(cardNo); // Wait next command

i8092_ARC_CCW(cardNo, -1500, 0, -1500, 1500); // Segment 4
i8092_NEXT_WAIT(cardNo); // Wait next command

i8092_LINE_2D(cardNo, -4500, 0); // Segment 5
i8092_NEXT_WAIT(cardNo); // Wait next command

i8092_ARC_CCW(cardNo, 0, -1500, -1500, -1500); // Segment 6
i8092_NEXT_WAIT(cardNo); // Wait next command

i8092_LINE_2D(cardNo, 0, -1500); // Segment 7
i8092_NEXT_WAIT(cardNo); // Wait next command

i8092_ARC_CCW(cardNo, 1500, 0, 1500, -1500); // Segment 8
i8092_STOP_WAIT(cardNo, Card[cardNo].plane);

Delay(500); // Because of the servo lag, In eVC use Sleep(500)

ICPDAS I-8092F Software User Manual 153

Bit Pattern Interpolation Functions

i8092_BP_ENABLE
i8092_BP_DISABLE

 Format:

void i8092_BP_ENABLE(unsigned char cardNo)
 void i8092_BP_DISABLE(unsigned char cardNo)

 Function:

Enable/disable the bit pattern data stack.

 Parameters:

cardNo is the board number.

 Example:
i8092_BP_ENABLE(1);

 i8092_BP_DISABLE(1);

i8092_BP_STACK
i8092_BP_CLEAR

 Format:

void i8092_BP_STACK(unsigned char cardNo)
 void i8092_BP_CLEAR(unsigned char cardNo)

 Function:

Stack/clear the bit pattern data.

 Parameters:

cardNo is the board number.

 Example:
i8092_BP_STACK(1);

 i8092_BP_CLEAR(1);

ICPDAS I-8092F Software User Manual 154

i8092_BP_WAIT

 Format:

void i8092_BP_WAIT(unsigned char cardNo)

 Function:

Wait for bit pattern data outputting.

 Parameters:

cardNo is the board number.

 Example:

i8092_BP_WAIT(1);

i8092_BP_LINE2D_DEMO

 Format:

void i8092_BP_LINE2D_DEMO(unsigned char cardNo, long p1, long p2)

 Function:

The linear DDA method for the bit pattern interpolation.

 Parameters:

cardNo is the board number.

 Example:
i8092_BP_LINE2D_DEMO(1, 30, 40);

According to the below flow chart, user can use linear interpolation DDA algorithm to produce

the BP data. However 2
2

2
1 PPL += , P1, P2 are the pulse number of each axis.

ICPDAS I-8092F Software User Manual 155

Fig. A-37 Bit pattern interpolation by using the linear DDA method

 Note: The following bit pattern demo program is only valid in I-8000. User use the
 polling method to implement the bit pattern by calling the i8092_BP_LINE2_DEMO
 function and use interrupt method to implement by calling the

i8092_BP_LINE_DEMO_INT function.

ICPDAS I-8092F Software User Manual 156

Fig. A-38 Use linear DDA method for bit pattern interpolation

Demo Program: Bit pattern interpolation by using the linear DDA data
Parameters: cardNo=1, master axis=0x1 (AXIS_X), 2nd axis=0x2 (AXIS_Y), P1=30, P2=40

 i8092_AXIS_ASSIGN(cardNo, 0x1, 0x2, 0);
 i8092_MOTION_TYPE(cardNo, ACCMODE);
 i8092_SET_AUTODEC(cardNo, Card[cardNo].plane); // Auto Deceleration Enabled
 i8092_SET_TCURVE(cardNo, Card[cardNo].plane); // Set T-Curve Mode
 i8092_SET_R(cardNo, Card[cardNo].plane, 8000000); // Multiple=1
i8092_SET_SV(cardNo, Card[cardNo].plane, 50);
i8092_SET_V(cardNo, Card[cardNo].plane, 500);
i8092_SET_A(cardNo, Card[cardNo].plane, 80);
i8092_BP_ENABLE(cardNo); // BP Interpolation Enabled
i8092_BP_LINE2_DEMO(cardNo, 30, 40); // Linear DDA Data Stack
i8092_BP_DISABLE(cardNo); // BP Interpolation disabled

ICPDAS I-8092F Software User Manual 157

Use the linear DDA method, set P1(X-axis) = 30, P2(Y-axis) = 40, and the linear DDA data are
calculated as bellows:

Table A-7 DDA data for the bit pattern interpolation

Index Z1 Hex1 Z2 Hex2 X Y Index Z1 Hex1 Z2 Hex2 X Y

1 0 0 0 0 26 0 0 15 20
2 1 1 1 1 27 1 1 16 21
3 0 1 1 2 28 0 1 16 22
4 1 1 2 3 29 1 1 17 23
5 1 1 3 4 30 1 1 18 24
6 0 0 3 4 31 0 0 18 25
7 1 1 4 5 32 1

1

19 25
8 0 1 4 6 33 0 1 19 26
9 1 1 5 7 34 1 1 20 27
10 1 1 6 8 35 1 1 21 28
11 0 0 6 8 36 0 0 21 29
12 1 1 7 9 37 1 1 22 29
13 0 1 7 10 38 0 1 22 30
14 1 1 8 11 39 1 1 23 31
15 1 1 9 12 40 1 1 24 32
16 0

0x6b5a

0

0x7bde

9 12 41 0 0 24 32
17 1 1 10 13 42 1 1 25 33
18 0 1 10 14 43 0 1 25 34
19 1 1 11 15 44 1 1 26 35
20 1 1 12 16 45 1 1 27 36
21 0 0 12 16 46 0 0 27 36
22 1 1 13 17 47 1 1 28 37
23 0 1 13 18 48 0

0x5ad6

1

0xdef7

28 38
24 1 1 14 19 49 1 1 29 39
25 1

0xb5ad

1

0xbdf7

15 20 50 1 0x3 1 0x3 30 40

 Note: Z1, Z2 are the output pulse on the each interval, X is the sum of Z1, Y is the sum
of Z2, Hex1 is the 16 bits character made of 16 ones or zeros (Z1), and Hex2 is the 16
bits character made of 16 ones or zeros (Z2)

ICPDAS I-8092F Software User Manual 158

A.7.6 Automatic Home Search

Table A-8 Home Search Function

 Function Name Description

i8092_EXTENSION_MODE Write data into the WR6, WR7 registers and use 60h command
to set the conditions for automatic search mode.

i8092_GET_EM6 i8092_GET_EM6
i8092_GET_EM7 i8092_GET_EM7
i8092_IN0_LEVEL Setting the active level of the near home signal (IN0).
i8092_IN1_LEVEL Setting the active level of the home signal (IN1).
i8092_IN2_LEVEL Setting active level of the encoder Z-phase signal (IN2).
i8092_SET_HV The home search speed (HV) setting.
i8092_HOME_STEP1 Home search step 1 mode setting.
i8092_HOME_STEP2 Home search step 1 mode setting.
i8092_HOME_STEP3 Home search step 1 mode setting.
i8092_HOME_STEP4 Home search step 1 mode setting.
i8092_HOME_SAND Home and Encoder Z-phase signal condition setting.
I8092_HOME_LIMIT The home search uses an overrun limit signal setting.

i8092_HOME_PCLR Clear the logic position and real position counter at termination
home search.

i8092_HOME_START Start execution of automatic home search.
i8092_HOME_MODE Set the home search mode.

i8092_EXTENSION_MODE

 Format:

void i8092_EXTENSION_MODE(unsigned char cardNo, WORD axis,
WORD em6data, WORD em7data)

 Function:

Write data to the WR6, WR7 registers and uses 64h command to set the conditions
for synchronous action mode.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
em6data is the 32-bit data for writing in the WR6 register.
em7data is the 32-bit data for writing in the WR7 register.

Example:

//Use the function to set the home search type of negative direction, and hardware
//signal: home, near home, limit-.
i8092_EXTENSION_MODE(1, 0xf, 0x5f00, 0x054f);

ICPDAS I-8092F Software User Manual 159

i8092_GET_EM6

Format:

WORD i8092_GET_EM6(BYTE cardNo, WORD axis)

Function:
Get the data of EM6.

Parameters:

cardNo board number.
 axis axis or axes. Please refer to Table 2-1.

Example: //get the EM6 value of the X-axis on card 1
WORD em6Data;
em6Data = i8092_GET_EM6(1, 0x1);

i8092_GET_EM7

Format:

WORD i8092_GET_EM7(BYTE cardNo, WORD axis)

Function:

Get the data of EM7.

Parameters:

cardNo board number.
 axis axis or axes. Please refer to Table 2-1.

Example: //get the EM7 value of the X-axis on card 1

WORD em7Data;
em7Data = i8092_GET_EM7(1, 0x1);

ICPDAS I-8092F Software User Manual 160

i8092_IN0_LEVEL

Format:

void i8092_IN0_LEVEL(unsigned char cardNo, WORD axis, WORD nLevel)

Function:
Set the logic level of the IN0 signal.

Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in ㎜ 2-1.
nLevel is the setting the active level of home signal (IN1).

nLevel=0, Low active; nLevel=1, Hi active.

Example:

i8092_IN0_LEVEL(1, 0xf, 0);

8092_IN1_LEVEL

 Format:

void i8092_IN1_LEVEL(unsigned char cardNo, WORD axis, WORD nLevel)

 Function:
Set the logic level of the IN1 signal.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
nLevel is setting the active level of the near home signal (IN0).

nLevel=0, Low active; nLevel=1, Hi active.

 Example:

i8092_IN1_LEVEL(1, 0xf, 0);

ICPDAS I-8092F Software User Manual 161

i8092_IN2_LEVEL

 Format:

void i8092_IN2_LEVEL(unsigned char cardNo, WORD axis, WORD nLevel)

 Function:
Set the logic level of the IN2 signal.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
nLevel is the setting the active level of the encoder Z-phase signal (IN2).

nLevel=0, Low active; nLevel=1, Hi active.

 Example:
i8092_IN2_LEVEL(1, 0xf, 0);

i8092_SET_HV

 Format:

void i8092_SET_HV(unsigned char cardNo, WORD axis, WORD data)

 Function:

Set he home search speed (HV).

 Parameters:
cardNo is the board number.

 axis is the motion axis code/name, as shows in Table 2-1.
 data is the home search speed value. Data range:1~8000

 Example: //Set home search speed 1000 (PPS)
 i8092_SET_HV(1, 0xf, 1000);

ICPDAS I-8092F Software User Manual 162

i8092_HOME_STEP1

Format:

void i8092_HOME_STEP1(unsigned char cardNo, WORD axis,
WORD nType, WORD nDir)

Function:

Use the near home signal (IN0) to operate the home search.

Parameters:
cardNo is the board number.
axis is the motion axis code/name.
nType is the specified the near home signal (IN0) executed or not.

nType= 0, non-execution; nType=1, execution.
nDir is the operation direction of the step.

nDir=0, positive; nDir=1, negative

Example: //Set the step 1 enabled and – negative direction of the home search
 i8092_HOME_STEP1(1, 0xf, 1, 1);

i8092_HOME_STEP2

Format:

void i8092_HOME_STEP2(unsigned char cardNo, WORD axis,
WORD nType, WORD nDir)

Function:

Use the home signal (IN1) to operate the home search.

Parameters:

cardNo is the board number.
axis is the motion axis code/name.
nType is the specified the home signal (IN1) executed or not.

nType= 0, non-execution; nType=1, execution.
nDir is the operation direction of the step.

nDir=0, positive; nDir=1, negative

Example: //Set the step 2 enabled and – negative direction of the home search

 i8092_HOME_STEP2(1, 0xf, 1, 1);

ICPDAS I-8092F Software User Manual 163

i8092_HOME_STEP3

Format:

void i8092_HOME_STEP3(unsigned char cardNo, WORD axis,
WORD nType, WORD nDir)

Function:

Use the signal (IN2) to operate the home search.

Parameter:

cardNo is the board number.
axis is the motion axis code/name.
nType is the specified the encoder z-phase signal (IN2) executed or not.

nType= 0, non-execution; nType=1, execution.
nDir is the operation direction of the step.

nDir=0, positive; nDir=1, negative

 Example: //Set the step 3 enabled and negative direction of the home search
 i8092_HOME_STEP3(1, 0xf, 1, 1);

i8092_HOME_STEP4

Format:

void i8092_HOME_STEP4(unsigned char cardNo, WORD axis,
WORD nType, WORD nDir)

Function:

Set the offset drive in the last step.

Parameter:

cardNo is the board number.
axis is the motion axis code/name.
nType is the specified the near home signal (IN0) executed or not.

nType= 0, non-execution; nType=1, execution.
nDir is the operation direction of the step.

nDir=0, positive; nDir=1, negative

Example: //Set the step 4 enabled and – negative direction of the home search
 i8092_HOME_STEP4(1, 0xf, 1, 1);

ICPDAS I-8092F Software User Manual 164

i8092_HOME _SAND

 Format:

void i8092_HOME_SAND(unsigned char cardNo,WORD axis, WORD nType)

 Function:

Set the operation of step 3 when the home signal and the encoder z-phase signal
become active.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
nType=0, disable; nType=1, enable.

 Example: //Disable the SAND (WR7/D9) condition.
 i8092_HOME_SAND(1, 0xf, 0);

i8092_HOME _LIMIT

 Format:

void i8092_HOME_LIMIT(unsigned char cardNo, WORD axis, WORD nType)

 Function:

Set the home search using an overrun limit signal.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.
nType=0, disable; nType=1, enable.

 Example: //Disable the LIMIT (WR7/D10) condition.
 i8092_HOME_LIMIT(1, 0xf, 0);

ICPDAS I-8092F Software User Manual 165

i8092_HOME _PCLR

 Format:

void i8092_HOME_PCLR(unsigned char cardNo, WORD axis, WORD nType)

 Function:

Clear the logic position and real position counter at termination home search.

 Parameters:
cardNo is the board number.

 axis is the motion axis code/name, as shows in Table 2-1.
 nType=0, disable; nType=1, enable.

 Example: //Enable the PCLR (WR7/D8) condition.
 i8092_HOME_PCLR(1, 0xf, 0);

i8092_HOME _START

 Format:

void i8092_HOME_START(unsigned char cardNo, WORD axis)

 Function:

Start execution of automatic home search.

Parameters:
cardNo is the board number.

 axis is the motion axis code/name, as shows in Table 2-1.

Example: //Start home search operation.
 i8092_HOME_START(1, 0xf);

ICPDAS I-8092F Software User Manual 166

i8092_HOME _MODE

Format:

void i8092_HOME_MODE(unsigned char cardNo,WORD axis,
WORD Hometype)

 Function:

Home search demo function.

 Parameters:
cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1.
HomeType is one of the 8 combination cases of various homing steps. 8 cases are

defined in the following table.

Table A-9 Signals for home search types

Home Type Comment
0 Dir-, hardware signal used: home, near home, limit-

1 Dir+, hardware signal used: home, near home, limit+

2 Dir-, hardware signal used: home, limit- (step1 disabled)

3 Dir+, hardware signal used: home, limit+ (step1 disabled)

4 Dir-, hardware signal used: home, near home, limit-, encoder-Z

5 Dir+, hardware signal used: home, near home, limit+, encoder-Z

6 Dir-, hardware signal used: home, limit-, encoder-Z

7 Dir+, hardware used: home, limit+, encoder-Z

 Example: //Set the type 0 of the home search for all axes.
 i8092_HOME_DEMO(1, 0xf, 0);
 //Start the home search motion.
 i8092_HOME_START(1, 0xf);

ICPDAS I-8092F Software User Manual 167

� Example of home search using a near home (IN0), home signal (IN1) and Z-phase

signal.

� Operation

 Input signal and logical level Search direction Search speed
Step 1 Near home signal (IN0) is active (low) - 20000 (PPS)
Step 2 Home signal (IN1) is active (low) - 500 (PPS)
Step 3 Z-phase signal (IN2) is active (high) + 500 (PPS)
Step 4 35000 pulse offset + 20000 (PPS)

Fig. A-39 Hardware disposition for home operation example 1

Demo Program: Example of home search using a near home (IN0), home signal (IN1)
 and the Z-phase signal.
Parameters: cardNo=1, motion axis=0xf (AXIS_ALL)

i8092_SET_R(1, 0xf, 800000) // Set Multiple=10
i8092_HLMTM_LEVEL(cardNo, 0xf, 0); // Set negative limit signal of low active
i8092_LMTSTOP_MODE(cardNo, 0xf, 0) // Set Limit stop mode of decelerating stop
i8092_HOME_STEP1(cardNo, 0xf, 1, 1); // Set Step1 is executed and negative direction for 2-axes
i8092_HOME_STEP2(cardNo, 0xf, 1, 1); // Set Step2 is executed and negative direction for 2-axes
i8092_HOME_STEP3(cardNo, 0xf, 1, 0); // Set Step3 is executed and positive direction for 2-axes
i8092_HOME_STEP4(cardNo, 0xf, 1, 0); // Set Step4 is executed and positive direction for 2-axes
i8092_SET_SV(cardNo, 0xf, 500); // Set start velocity=500 (PPS)
i8092_SET_V(cardNo, 0xf, 2000); // Set drive velocity=2000 (PPS)
i8092_SET_A(cardNo, 0xf, 80); // Set acceleration=80 (PPS/Sec)
i8092_SET_HV(cardNo, 0xf, 500); // Set home speed=500 (PPS)
i8092_SET_PULSE(cardNo, 0xf, 20000); // Set offset pulse=20000
i8092_HOME_START(cardNo , 0xf); // Starts execution of automatic home search
i8092_STOP_WAIT(cardNo, 0xf); // Wait drive stop
Sleep(500); // In BC use Delay(500);
i8092_SET_LP(cardNo, axis, 0); // Clear LP counter
i8092_SET_EP(cardNo, axis, 0); // Clear EP counter

 Note: In this example, the user should connect the IN0~IN2 signals as shown in the
 diagram on the left-hand side.

ICPDAS I-8092F Software User Manual 168

� Example of home search using a home signal (IN1) only.

� Operation

 Input signal and logical level Search direction Search speed
Step 1 Near home signal (IN0) is active (low) - 20000 (PPS)
Step 2 Home signal (IN1) signal active (low) - 500 (PPS)
Step 3 Not executed
Step 4 35000 pulse offset + 20000 (PPS)

Fig. A-40 Hardware disposition for home operation example 2

Demo Program: Example of home search using a home signal (IN1) only.
Parameters: cardNo=1, motion axis=0xf (AXIS_ALL)

i8092_SET_R(cardNo, 0xf, 800000) // Set Multiple=10
i8092_HOME_STEP1(cardNo, 0xf, 1, 1); // Set Step1 is executed and negative direction for 2-axes
i8092_HOME_STEP2(cardNo, 0xf, 1, 1); // Set Step2 is executed and negative direction for 2-axes
i8092_HOME_STEP3(cardNo, 0xf, 0, 0); // Set Step3 is non-executed
i8092_HOME_STEP4(cardNo, 0xf, 1, 0); // Set Step4 is executed and positive direction for 2-axes
i8092_SET_SV(cardNo, 0xf, 500); // Set start velocity=500 (PPS)
i8092_SET_V(cardNo, 0xf, 2000); // Set drive velocity=2000 (PPS)
i8092_SET_A(cardNo, 0xf, 80); // Set acceleration=80 (PPS/Sec)
i8092_SET_HV(cardNo, 0xf, 500); // Set home speed=500 (PPS)
i8092_SET_PULSE(cardNo, 0xf, 20000); // Set offset pulse=20000
i8092_HOME_START(cardNo, 0xf); // Starts execution of automatic home search
i8092_STOP_WAIT(cardNo, axis); // Wait drive stop
Sleep(500); // Delay 500ms, In BC use Delay(500);
i8092_SET_LP(cardNo, axis, 0); // Clear LP counter
i8092_SET_EP(cardNo, axis, 0); // Clear EP counter

ICPDAS I-8092F Software User Manual 169

� Example of home search using a limit signal only.

� Operation

 Input signal and logical level Search direction Search speed

Step 1 Near home signal (IN0) is active (low) - 20000 (PPS)
Step 2 Home signal (IN1) signal is active (low) - 500 (PPS)
Step 3 Not executed
Step 4 35000 pulse offset + 20000 (PPS)

Fig. A-41 Hardware disposition for home operation example 3

Demo Program: Example of home search using a limit signal only.
Parameters: cardNo=1, motion axis=0xf

i8092_SET_R(cardNo, 0xf, 800000) // Set Multiple=10
i8092_HLMTM_LEVEL(1, 0xf, 0); // Set negative limit signal of low active
i8092_LMTSTOP_MODE(cardNo, 0xf, 0) // Set Limit stop mode of decelerating stop
i8092_HOME_SAND(cardNo, 0xf, 0); // Set Z-phase and home signal disabled
i8092_HOME_STEP1(cardNo, 0xf, 1, 1); // Set Step1 is executed and negative direction for 2-axes
i8092_HOME_STEP2(cardNo, 0xf, 1, 1); // Set Step2 is executed and negative direction for 2-axes
i8092_HOME_STEP3(cardNo, 0xf, 1, 0); // Set Step3 is executed and positive direction for 2-axes
i8092_HOME_STEP4(cardNo, 0xf, 1, 0); // Set Step4 is executed and positive direction for 2-axes
i8092_SET_SV(cardNo, 0xf, 500); // SV=500, Start Speed=5000 (PPS)
i8092_SET_V(cardNo, 0xf, 2000); // V=2000, Drive Speed=20000 (PPS)
i8092_SET_A(cardNo, 0xf, 80); // A=80, Acceleration=10K (PPS/Sec)
i8092_SET_HV(cardNo, 0xf, 500); // HV=500 Home Speed=5000 (PPS)
i8092_SET_PULSE(cardNo, 0xf, 3500); // Set offset pulse=3500
i8092_HOME_START(cardNo, 0xf); // Starts execution of automatic home search
i8092_STOP_WAIT(cardNo, axis); // Wait drive stop
Delay(500); // Delay 500ms, In eVC use Sleep(500);
i8092_SET_LP(cardNo, axis, 0); // Clear LP counter
i8092_SET_EP(cardNo, axis, 0); // Clear EP counter

ICPDAS I-8092F Software User Manual 170

A.7.7 Interrupt Function

Table A-10 Synchronous Action functions

函式名稱 敘述
i8092_BPINT_ENABLE 致能位元補間中斷。
i8092_BPINT_DISABLE 除能位元補間中斷。
i8092_CIINT_ENABLE 致能連續補間中斷。
i8092_CIINT_DISABLE 除能連續補間中斷。
i8092_INTFACTOR_ENABLE 致能各中斷條件因子。
i8092_INTFACTOR_DISABLE 除能各中斷條件因子。

i8092_SYNC_MODE

 Format:

void i8092_SYNC_MODE(unsigned char cardNo, WORD axis,
WORD sm6data, WORD sm7data)

 Function:

Writes data to the WR6, WR7 registers and uses 64h command to set the conditions
for synchronous action mode.

 Parameters:

cardNo is the board number.
axis is the motion axis code, as shows in Table 2-1.
sm6data is the data for the WR6 register.
sm7data is the data for the WR6 register.

 Example: //Set the X axis (0x1) as the Provocative axis, Y axis (0x2) as the Active

//axis. However the activation factor is the logic position counter value
//exceeded the value of COMP+ register (P ≥ C+), and the action is the positive
//fixed pulse driving.
i8092_SET_SYNCMODE(1, 0x1, 0x2001 , 0x0);
i8092_SET_SYNCMODE(1, 0x2, 0x0, 0x0010);

ICPDAS I-8092F Software User Manual 171

i8092_GET_SB

 Format:

void i8092_GET_SB(unsigned char cardNo, WORD axis)

 Function:

Read the synchronous action buffer register.

 Parameters:

cardNo is the board number.
axis is the motion axis code/name, as shows in Table 2-1.

 Example: //Get the data from the x-axis’s buffer register.

i8092_GET_SB(1, 0x1);

i8092_GET_SM6

Format:

WORD i8092_GET_SM6(BYTE cardNo, WORD axis)

Function:
Get the value of SM6 register.

Parameters:

cardNo board number
 axis axis or axes. Please refer to Table A2-1.

Example: //Get the value of SM6 of X-axis on board 1.

WORD sm6Data;
sm6Data = i8092_GET_SM6(1, 0x1);

i8092_GET_SM7

Format:

WORD i8092_GET_SM7(BYTE cardNo, WORD axis)

Function:
Get the value of SM7 register.

Parameters:

cardNo board number
 axis axis or axes. Please refer to Table A2-1.

Example: //Get the value of SM7 of X-axis on board 1.

WORD sm7Data ;

ICPDAS I-8092F Software User Manual 172

sm7Data = i8092_GET_SM7(1, 0x1);

Demo Program: When the X axis is passing through the position 10000, the Y axis
starts +direction fixed-pulse drive.

Parameters: cardNo=1, ProvocativePulse=15000, ActivePulse=30000;
 TotalAxis=0x3 (AXIS_XY), ProvocativeAxis=0x1 (AXIS_X), ActiveAxis=0x2 (AXIS_Y)
 CompValue=10000

 // Set parameters s for total axes or you can also set for individual axis
 i8092_SET_SV(cardNo, TotalAxis, 100);
 i8092_SET_V(cardNo, TotalAxis, 3000);
 i8092_SET_A(cardNo, TotalAxis, 160);
 // Set output pulse for the provocative axis
 i8092_SET_PULSE(cardNo, ProvocativeAxis, ProvocativePulse);
 // Set output pulse for active axis
 i8092_SET_PULSE(cardNo, ActiveAxis, ActivePulse);

 // Set a boundary condition COMP+ in the provocative axis
 i8092_SET_CP(cardNo, ProvocativeAxis, CompValue);
 // Disable the software limit
 for(i=0;i<4;i++)
 {

i8092_SET_WR2(cardNo, 1<<i, Reg[cardNo].WR2[i]&~0x0003);
 }
 // Provocative factor: P>=C+
 i8092_SYNC_MODE(cardNo, ProvocativeAxis, 0x2001, 0x0);
 i8092_COMMAND(cardNo, ProvocativeAxis, 0x20);
 // Action of the active axisÆ +direction fixed-pulse drive
 i8092_SYNC_MODE(cardNo, ActiveAxis, 0x0, 0x0001);
 i8092_COMMAND(cardNo, ActiveAxis, 0x20);

ICPDAS I-8092F Software User Manual 173

Fig. A-42 Synchronous action example 1

Demo Program: At first the X,Y axes continuous drive, when the X axis is passing
 through the position -10000, the Y axis stops.
Parameters: cardNo=1, ProvocativePulse=15000, ActivePulse=30000;
 TotalAxis=0x3 (AXIS_XY), ProvocativeAxis=0x1 (AXIS_X), ActiveAxis=0x2 (AXIS_Y)
 CompValue=10000

 // Set parameters s for total axes or you can also set for individual axis
 i8092_SET_SV(cardNo, AXIS_X, 100);
 i8092_SET_V(cardNo, AXIS_X, 3000);
 i8092_SET_A(cardNo, AXIS_X, 160);

i8092_SET_SV(cardNo, AXIS_Y, 100);
 i8092_SET_V(cardNo, AXIS_Y, 2000);
 i8092_SET_A(cardNo, AXIS_Y, 80);
 // Set output pulse for the provocative axis
 i8092_SET_PULSE(cardNo, ProvocativeAxis, ProvocativePulse);
 // Set output pulse for active axis
 i8092_SET_PULSE(cardNo, ActiveAxis, ActivePulse);

// Set a boundary condition COMP- in provocative axis
 i8092_SET_CM(cardNo, ProvocativeAxis, CompValue);
 // Disable the software limit
 for(i=0;i<4;i++)
 {

i8092_SET_WR2(cardNo, 1<<i, Reg[cardNo].WR2[i]&~0x0003);
 }
 // -Direction continuous drive for the provocative axis
 i8092_COMMAND(cardNo, ProvocativeAxis, 0x21);
 // Action of the active axis ---> Stop
 i8092_SYNC_MODE(cardNo, ActiveAxis, 0x0, 0x0010);
 // +Direction continuous drive for the active axis
 i8092_COMMAND(cardNo, ActiveAxis, 0x21);

ICPDAS I-8092F Software User Manual 174

Fig. A-43 Synchronous action example 2

ICPDAS I-8092F Software User Manual 175

Demo Program: Advanced application for synchronous motion: X,Y axes circular
interpolation + Z axis fixed-pulse drive

Parameters: cardNo=1, tempSV=100 (initial speed for XY circular interpolation), tempV=2000

(Drive speed for XY circular interpolation), tempA=80 (The acceleration for XY
interpolation), tempVZ=687 (The constant speed for Z axis), tempDP=13963
(Deceleration point for XY circular interpolation)

Description: Set the inclined plane is X,Y-axes and the vertical plane is Z-axis
 And the radius of the circle is 5000 and the angle of inclination is 30.

// Set parameters s for total axes or you can also set for individual axis
 i8092_SET_SV(cardNo, TotalAxis, tempSV);
 i8092_SET_V(cardNo, TotalAxis, tempV);
 i8092_SET_A(cardNo, TotalAxis, tempA);
 // Select the master axis
 i8092_AXIS_ASSIGN(cardNo, AXIS_X, AXIS_Y, 0);
 // Acc mode setting
 i8092_MOTION_TYPE(cardNo, ACCMODE);
 // T-curve acc mode setting
 i8092_SET_TCURVE(cardNo, Card[cardNo].plane);
 // Deceleration enabled
 i8092_DEC_ENABLE(cardNo);
 // 2-axes circular interplation mode setting
 i8092_SET_R(cardNo, Card[cardNo].ax1, 8000000L);
 i8092_SET_R(cardNo, Card[cardNo].ax2, 8000000L *1414L/1000L);
 // Set parameters for X,Y axes
 i8092_SET_SV(cardNo, AXIS_X, tempSV);
 i8092_SET_V(cardNo, AXIS_X, tempV);
 i8092_SET_A(cardNo, AXIS_X, tempA);
 // Set parameters for Z axis
 i8092_SET_R(cardNo, AXIS_Z, templong);
 i8092_SET_SV(cardNo, AXIS_Z, tempVZ);
 i8092_SET_V(cardNo, AXIS_Z, tempVZ);

 // Synchronous action provocative factor: D-STA
 // 1st seg
 i8092_SYNC_MODE(cardNo, AXIS_X, 0x4010, 0x0000);
 i8092_SYNC_MODE(cardNo, AXIS_Z, 0x0000, 0x0002);
 i8092_SET_MANDEC(cardNo, AXIS_X, tempDP);
 i8092_ARC_CW(cardNo, 0, -5000, 0, -10000);
 i8092_SET_PULSE(cardNo, AXIS_Z, 5000);
 i8092_DRV_FDRIVE(cardNo, AXIS_Z, 1);

 // Wait for drive stop
i8092_STOP_WAIT(cardNo, AXIS_XYZ);

ICPDAS I-8092F Software User Manual 176

Fig. A-44 Synchronous action example 3

 i8092_STOP_WAIT(cardNo, AXIS_XYZ); // 2nd seg
 i8092_SYNC_MODE(cardNo, AXIS_X, 0x4010, 0x0000);
 i8092_SYNC_MODE(cardNo, AXIS_Z, 0x0000, 0x0001);
 i8092_SET_MANDEC(cardNo, AXIS_X, tempDP);
 i8092_ARC_CW(cardNo, 0, 5000, 0, 10000);
 i8092_SET_PULSE(cardNo, AXIS_Z, 5000);
 i8092_DRV_FDRIVE(cardNo, AXIS_Z, 0);
 // Wait for drive stop
 Delay(500); // Because of the servo lag

ICPDAS I-8092F Software User Manual 177

A.7.8 FRnet Related Functions

Table A-14 FRnet related functions

Function Name Description
i8092_FRNET_SA Write data to digital output of FRnet interface.
i8092_FRNET_RA Read digital input from FRnet interface.

i8092_FRNET_SA

Format:

void i8092_FRNET_SA(BYTE cardNo, WORD wSA, WORD data)

Function:

This function write data to the FRnet digital output. SA means the Sending Address
which can be one of the legal group number of FRnet. One group comprises 16 bits
data. Therefore, total 128 DO can be defined for one FRnet interface.

Parameters:

cardNo is the board number.
wSA: Group number, range 0~7

8~15 are used for digital inputs
 data: 16-bit data

Return:

 WORD 16-bit DI data

Example:
 WORD IN_Data;

IN_Data = i8092_FRNET_RA(1, 8);
 //Read the 16-bit DI which is on module 1 and the group number is 8.

ICPDAS I-8092F Software User Manual 178

i8092_FRNET_RA

Format:

void i8092_FRNET_RA(BYTE cardNo, WORD wRA)

Function:

This function reads the FRnet digital input signals. RA means the Receiving Address
which can be one of the legal group number of FRnet. One group comprises 16 bits
data. Therefore, total 128 DI can be defined for one FRnet interface.

Parameters:

cardNo is the board number.
wRA: Group number, range 8~15

0~7 are used for digital outputs
 data: 16-bit data
Return:

 None

Example:
 i8092MF_FRNET_SA(1, 0,0xffff);
 //Write 0xffff to the 16-bit DO which is on module 1 and the group number is 0.

ICPDAS I-8092F Software User Manual 179

A.8 i8092 Command Lists

For the advanced users who can develop their applications by using the
basic function, several lists of command codes and their corresponding
ranges are listed below. For more information, users can refer to the manual of
MCX312 motion chip.

A.8.1 Data Setting Commands

Symbol Code Command Data Range
Data

length
(Byte)

R 00h Range setting 8,000,000~16,000 4
K 01h Acc rate (Jerk) setting 0 ~ 65,535 2
A 02h Acceleration (Acc) setting 1 ~ 8,000 2
D 03h Deceleraton (Dec) setting 1 ~ 8,000 2

SV 04h Initial speed setting 1 ~ 8,000 2
V 05h Driving speed setting 1 ~ 8,000 2
P 06h Output pulse numbers 0~+228 4

FP 06h Finish point setting -231~+231 4

DP 07h Manual deceleration point
setting 0 ~ 65,535 2

C 08h Circular center point setting -231~+231 4
LP 09h Logical position counter setting -231~+231 4
EP 0Ah Real position counter setting -231~+231 4
CP 0Bh COMP+ register setting -231~+231 4
CM 0Ch COMP- register setting -231~+231 4

AO 0Dh Acceleration counter offset
setting 0~65535 2

A.8.2 Data Reading Commands

Symbol Code Command Data Range
Data

Length
(Byte)

LP 10h Logic position counter
reading -231~+231 4

EP 11h Real position counter reading -231~+231 4
CV 12h Current driving speed reading 1 ~ 8,000 2
CA 13h Current Acc/Dec value reading 1 ~ 8,000 2

SB 14h Synchronous buffer register
reading -231~+231 4

ICPDAS I-8092F Software User Manual 180

A.8.3 Driving Commands

Code Command
20h + direction fixed pulse driving
21h - direction fixed pulse driving
22h + direction continuous driving
23h - direction continuous driving
24h Drive start holding
25h Drive start holding release / stop status clear
26h Decelerating stop
27h Sudden stop

A.8.4 Interpolation Commands

Code Command
30h 2-axis linear interpolation
31h 3-axis linear interpolation
32h CW circular interpolation
33h CCW circular interpolation
34h 2-axis bit pattern interpolation
35h 3-axis bit pattern interpolation
36h BP register writing enable
37h BP register writing disable
38h BP data stack
39h BP data clear
3Ah 1-step interpolation
3Bh Deceleration valid
3Ch Deceleraiton invalid
3Dh Interpolation interrupt clear

A.8.5 Other commands

Code Command
62h Automatic home search execution
65h Synchronous action activation
0Fh NOP (for axis switching)

Appendix B: MCX312 Registers

This part gives the users some refereces about how to access the registers in the MCX312
chip. For more details, users still have to refer to this chip’s manual provided by NOVA
electronics Inc..

B.1 Command Register: WR0

Command register is used for the axis assignment and command
registration for each axis in MCX312. The register consists of the bit for axis
assignment, bit for setting command code, and bit for command resetting.

After the axis assignment and command code have been written to the
register, this command will be executed immediately. The data such as drive
speed setting and data writing command must be written to registers WR6 and
WR7 first. Otherwise, when the reading command is engaged, the data will be
written and set, through IC internal circuit, to registers RR6 and RR7.
When using the 8-bit data bus, the user should write data into the high word byte
(H), then low word byte (L).

It requires 250 nSEC (maximum) to access the command code when
CLK=16MHz. The input signal BUSYN is on the Low level at this moment. Please
don’ t write the next command into WR0 before BUSYN return to the Hi level.
WR0

Axis Assignment Command Code
D5 ~ 0 Command code setting Please refer to chapter 5 and the chapters
following for further description of command codes.
D9 ~ 8 Axis assignment When the bits of the axis are set to 1, the axis is
assigned. The assignment is not limited only for one axis, but for multi-axes
simultaneously. It is possible to write the same parameters also. However, the
data reading is only for one assigned axis. Whenever the interpolation is
commanded, the bits of the assigned axis (axes) should be set 0.
D15 RESET IC command resetting When this bit is set to 1, but others are 0, the
IC will be reset after command writing. After command writing, the BUSYN signal
will be on the Low level within 875 nSEC (When CLK=16 MHz) maximum.
When 8-bit data bus is used, the reset is activated when the command (80h) is
written to register WR0H.
RESET bit should be set to 0 when the other commands are written.

 http://www.icpdas.com 應用程式函式庫 v2.0 182

B.2 Mode Register1: WR1
Each axis is with mode register WR1. The axis specified by NOP command
or the condition before decides which axis’ s register will be written.
The register consists of the bit for setting enable / disable and enable
logical levels of input signal STOP2~STOP0 (decelerating stop / sudden
stop during the driving) and bit for occurring the interrupt enable / disable.
Once SP2~SP0 are active, when the fixed / continuous driving starts, and
also when STOP signal becomes the setting logical level, the decelerating
stop will be performed during the acceleration / deceleration driving and the
sudden stop will be performed during the constant speed driving.

WR1

D5,3,1 SPm-E The bit for setting enable / disable of driving stop input signal

STOPm 0: disable, 1: enable
D4,2,0 SPm-L The bit for setting enable logical levels for input signal STOPm 0:

stop on the Low level, 1:stop on the Hi
 level

D6 EPCLR
When driving stops triggered by the nSTOP2 signal, the real
position counter is cleared. When the nSTOP2

 signal is changed to the Active level while this bit is set to 1, the
driving stops and the real position counter

 (EP) is cleared. The WR1/D5(SP2-E) bit must be set to 1 and the
Enable level must be set in the

 WR1/D4(SP2-L) bit.

D7

EPINV Reverse increase / decrease of real position counter.

 http://www.icpdas.com 應用程式函式庫 v2.0 183

D7
(EPINV)

Input pulse mode Increase / Decrease of real
position counter

A / B -phase mode Count up when A –phase is
advancing Count down when
B –phase is advancing 0 Up-Down pulse

mode
Count up when PPIN pulse input
Count down when PMIN pulse
input

A / B -phase mode Count up when B –phase is
advancing Count down when
A –phase is advancing 1 Up-Down pulse

mode
Count up when PMIN pulse input
Count down when PPIN pulse
input

D8 SM0D Setting for prioritizing to reach specified drive speed during S
curve acceleration / deceleration driving. 1: enable
For the following bits, the interrupt is set: 1: enable, 0: disable

D9 P ≥ C− Interrupt occurs when the value of logical / real position counter is

larger than or equal to that of COMP−
 register

D10 P < C− Interrupt occurs when the value of logical / real position counter is
smaller than that of COMP− register

D11 P < C+ Interrupt occurs when the value of logical / real position counter is
smaller than that of COMP+ register

D12 P ≥ C+ Interrupt occurs when the value of logical / real position counter is
larger than or equal to that of COMP+

 register

D13
C-END

Interrupt occurs at the start of the constant speed drive during an
acceleration / deceleration driving

D14
C-STA

Interrupt occurs at the end of the constant speed drive during an
acceleration / deceleration driving

D15

D-END Interrupt occurs when the driving is finished

D15~D0 will be set to 0 while resetting.

 http://www.icpdas.com 應用程式函式庫 v2.0 184

B.3 Mode Register2: WR2
Each axis is with mode register WR2. The axis specified by NOP command
or the condition before decides which axis’ s register will be written.
WR2 can be used for setting: (1). external limit inputs, (2). driving pulse
types, (3). encoder signal types, and (4). the feedback signals from servo
drivers.

D0

SLMT+
Enable / disable setting for COMP+ register which is used as the +
direction software limit 1: enable, 0:

 disable
 Once it is enabled during the + direction driving, if the value of

logical / real position counter is larger
 than that of COMP+, the decelerating stop will be performed. The D0

(SLMT+) bit of register RR2 will
 become 1. Under this situation, further written + direction driving

commands will not be executed.
 Note: When a position counter variable ring is used, a software over

run limit cannot be used.
D1

SLMT−
Enable / disable setting for COMP− register which is used as the −
direction software limit 1: enable, 0:

 disable
 Once it is enabled during the − direction driving, if the value of

logical / real position counter is smaller
 than that of COMP−, the decelerating stop will be performed. The D1

(SLMT−) bit of register RR2 will
 become 1. Under this situation, further written − direction driving

commends will not be executed.
D2

LMTMD
The bit for controlling stop type when the hardware limits
(nLMTP and nLMTM input signals)

 are
active

 0: sudden stop, 1: decelerating stop

D3
HLMT+

Setting the logical level of + direction limit input signal (nLMTP) 0:
active on the Low level, 1: active on

 the Hi level

D4

HLMT−

Setting the logical level of − direction limit input signal (nLMTM)
0:active on the Low level, 1: active on

 the Hi level

D5

CMPSL

Setting if real position counter or logical position counter is going to
be compared with COMP +/− register

 0: logical position counter, 1 : real position counter

D6
PLSMD

Setting output pulse type 0: independent 2-pulse type, 1: 1-pulse
1-direction type

 http://www.icpdas.com 應用程式函式庫 v2.0 185

 When independent 2-pulse type is engaged, + direction pulses are
output through the output signal

 nPP/PLS, and − direction pulses through nPM/DIR.
 When 1-pulse 1-direction type is engaged, + and − directions pulses

are output through the output signal
 nPP/PLS, and nPM/DIR is for direction signals.
 [Note] Please refer to Chapter 13.2 and 13.3 for the output timing

of pulse signal (nPLS) and direction
 signal (nDIR) when 1-pulse 1-direction type is engaged.
D7 PLS-L Setting logical level of driving pulses 0: positive logical level, 1:

negative logical level

D8 DIR-L
Setting logical level of the direction (nPM/DIR) output signal for
1-pulse mode DIR-L

D8
(DIR-L) + direction − direction
0 Low Hi
1 Hi Low

D9 PINMD Setting the type of encoder input signals (nECA/PPIN and
nECB/PMIN)
0: quadrature pulse input type 1: Up / Down pulse input type
Real position counter will count up or down when encoder input signal is
triggered. When quadrature pulse input type is engaged, the “count up” will
happen if the positive logical level pulses are input to phase A; the “count
down” will happen if the positive logical level pulses are input to phase B.
So, it will count up and down when these 2 signals go up (↑) and down (↓).

When Up / Down pulse input type is engaged, nECA/PPIN is for “ count up”
input, and nECB/PMIN is for “count down” input. So, it will count up when
the positive pulses go up (↑).
D11,10 PIND1,0 The division setting for quadrature encoder input.
D11 D10 Division
0 0 1/1
0 1 1/2
1 0 1/4

 http://www.icpdas.com 應用程式函式庫 v2.0 186

1 1 Invalid

Up / down pulse input is not available.
D12

ALM-L
Setting active level of input signal nALARM 0: active on the Low
level, 1: active on the Hi level

D13
ALM-E

Setting enable / disable of servo alarm input signal nALARM 0:
disable, 1: enable

 When it is enabled, MCX312 will check the input signal. If it is active,
D14 (ALARM) bit of RR2 register

 will become 1. The driving stops.

D14
INP-L

Setting logical level of nINPOS input signal 0: active on the Low
level, 1: active on the Hi level

D15
INP-E

Setting enable/disable of in-position input signal nINPOS from servo
driver 0: disable, 1: enable

 When it is enabled, bit n-DRV of RR0 (main status) register does not
return to 0 until nINPOS signal is

 active after the driving is finished.

D15~D0 will be set to 0 while resetting.

B.4 Mode Register3: WR3
Each axis is with mode register WR3. The axis specified by NOP command
or the condition before decides which axis’ s register will be written.
WR3 can be used for manual deceleration, individual deceleration, S-curve
acceleration / deceleration, the setting of external operation mode, the
setting of input signal filter, and so on.
WR3

D0 MANLD Setting manual / automatic deceleration for the fixed
acceleration / deceleration driving
0: automatic deceleration, 1: manual deceleration The decelerating point
should be set if the manual deceleration mode is engaged.
D1 DSNDE Setting decelerating rate which is in accordance with the rate
of the acceleration or an individual decelerating rate
0: acceleration,1: deceleration
When 0 is set, acceleration value is used as acceleration / deceleration
during acceleration / deceleration driving. When 1 is set, acceleration value
is used during acceleration driving and deceleration value is used during
deceleration driving. 1 should be set for non-symmetrical trapezoidal
acceleration / deceleration driving.
D2 SACC Setting trapezoidal driving / S-curve driving
0: trapezoidal driving, 1: S-curve driving
Before S-curve driving is engaged, jerk (K) should be set.

 http://www.icpdas.com 應用程式函式庫 v2.0 187

D4,3 EXOP1,0 Setting the external input signals (nEXPP, nEXPM) for driving
D4
(EXOP1)

D3
(EXOP0)

0 0 external signals
disabled

0 1 continuous driving
mode

1 0 fixed driving mode

1 1 manual pulsar
mode

When the continuous driving mode is engaged, the + direction drive pulses will be
output continuously
once the nEXPP signal is on the Low level; the − direction pulses will be output
continuously once the
nEXPM signal is on the Low level. When the fixed driving mode is engaged, the +
direction fixed driving
starts once the nEXPP signal is falling to the Low level from the Hi level; the −
direction fixed driving
starts once the nEXPM signal is falling to the Low level from the Hi level.
In manual pulsar mode, fixed driving in the + direction is activated at ↑ f the nEXPP
signal when the
nEXPM signal is at the Low level. The fixed driving is activated at ↓ of the nEXPP
signal when the
nEXPM signal is at the Low level.

D5
AVTRI

Prevent triangle waveforms during fixed driving at the trapezoidal
acceleration / deceleration. 0: disable,

 1: enable.
 [Note] WR3/D5 bit should be reset to 0 when continuous driving is

performed after fixed driving.
D6

VRING
Enable the variable ring function of logical position and real position
counter. 0: disable, 1: enable.

D7
OUTSL

Driving status outputting or used as general purpose output signals
(nOUT7~0)

 http://www.icpdas.com 應用程式函式庫 v2.0 188

D12~8 FE4~0 Set whether the input signal filter function enables or signal
passes through. 0: through, 1: enable.

D15~13 FL2~0 Set a time constant of the filter.

FL2 ~ 0
Removable
maximum noise
width

Input signal
delay time

0 1.75µSEC 2µSEC
1 224µSEC 256µSEC
2 448µSEC 512µSEC
3 896µSEC 1.024mSEC
4 1.792mSEC 2.048mSEC
5 3.584mSEC 4.096mSEC
6 7.168mSEC 8.192mSEC
7 14.336mSEC 16.384mSEC

D15~D0 will be set to 0 while resetting.

 http://www.icpdas.com 應用程式函式庫 v2.0 189

B.5 Output Register: WR4
This register is used for setting the general purpose output signals
nOUT7~0. This 16-bit register locates 8 output signals of each axis. It can be
also used as a 16-bit general purpose output. It is Low level output when the
bit is set 0, and Hi level output when the bit is set 1.

D15~D0 will be set to 0 while resetting, and nOUT7~0 signals become Low
level.

4.8 Interpolation Mode Register: WR5
This register is used for setting constant vector speed mode, multichip
interpolation mode, 1-step interpolation mode and interrupt during the
interpolation.

D9,8 LSPD1,0 Constant vector speed mode setting of interpolation driving
D15~D0 will be set to 0 while resetting.
D9 D8 Code (Binary)

0 0 constant vector
speed invalid

0 1 2-axis constant
vector speed

1 0 (setting not
available)

1 1 (setting not
available)

When 2-axis constant vector speed mode is engaged, the user should set the
range (R) of the Y axis to be 1.414 times of the range (R) of the X axis.
D11,10
MLT1,0 Multichip interpolation mode setting
 D11 D10 Setting
 0 0 1

1
0 1
0 1

disable multichip interpolation main chip sub chip X,
Y (Both X and Y axes use) sub chip (Only X axis)

 http://www.icpdas.com 應用程式函式庫 v2.0 190

D12
EXPLS

When it is 1, the external (MPLS) controlled single step
interpolation mode is engaged.

D13

CMPLS
When it is 1, the command controlled single step interpolation
mode is engaged.

D14
CIINT

Interrupt enable / disable setting during interpolation 0: disable
1: enable

D15

BPINT

Interrupt enable / disable setting during bit-pattern interpolation
0: disable 1: enable

B.7 Data Register: WR6/WR7
Data registers are used for setting the written command data. The low-word
data-writing 16-bit (WD15~WD0) is for register RR6 setting, and the
high-word data-writing 16-bit (WD31~WD16) is for register RR7 setting.

WR6

WR7

The user can write command data with a designated data length into the
write register. It does not matter to write WR6 or WR7 first (when 8-bit data
bus is used, the registers are WR6L, WR6H, WR7L and WR7H).
The written data is binary formatted; 2’ complement is for negatives.
For command data, the user should use designated data length. For
instance, the circular interpolation of the finish point should be set by a
signed 32-bit format with the data length of 4 bytes, although its
calculatable data range is from –8,388,608 to +8,388,607 signed 24-bit
format.
The contents of WR6 and WR7 are unknown while resetting.

B.8 Main Status Register: RR0
This register is used for displaying the driving and error status of each axis.
It also displays interpolation driving, ready signal for continuous
interpolation, quadrant of circular interpolation and stack counter of bit
pattern interpolation.

 http://www.icpdas.com 應用程式函式庫 v2.0 191

D1, 0 n-DRV Displaying driving status of each axis When the bit is 1, the
axis is an outputting drive pulse. ; when the bit is 0, the driving of the axis is
finished. Once the in-position input signal nINPOS for servomotor is active,
nINPOS will return to 0 after the drive pulse output is finished.
D5, 4 n-ERR Displaying error status of each axis If any of the error bits
(D6~D0) of each axis’s RR2 register and any of the error-finish bits
(D15~D12) of each axis’ s RR1 register becomes 1, this bit will become 1.
D8 I-DRV Displaying interpolation driving status While the interpolation
drive pulses are outputting, the bit is 1.
D9 CNEXT Displaying the possibility of continuous interpolation data
writing When the bit is 1, it is ready for inputting parameters for next node
and also ready for writing interpolation command data.
D12 ~ 10 ZONEm Displaying the quadrant of the current position in circular
interpolation

D12

D11

D10 Quadrant

 0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D14,13 BPSC1,0 In bit pattern interpolation driving, it displays the value of
the stack counter (SC).

In bit pattern interpolation driving, when SC = 3, it shows the stack is full.
When SC = 2, there is one word (16-bit) space for each axis. When SC = 1,
there is a 2-word (16-bit × 2) for each axis. When SC = 0, it shows all the
stacks are empty, and the bit-pattern interpolation is finished.

B.9 Status Register 1: RR1
Each axis is with status register 1. The axis specified by NOP command or
the condition before decides which axis’ s register will be read.
The register can display the comparison result between logical / real
position counter and COMP +/− , the acceleration status of acceleration /
deceleration driving, jerk of S-curve acceleration / deceleration and the
status of driving finishing.

 http://www.icpdas.com 應用程式函式庫 v2.0 192

Status of Driving Finishing
D0 CMP+ Displaying the comparison result between logical / real

position counter and COMP+ register
 1: logical / real position counter ≥ COMP+ register
 0: logical / real position counter < COMP+ register

D1 CMP− Displaying the comparison result between logical / real
position counter and COMP− register

 1: logical / real position counter < COMP− register
 0: logical / real position counter ≥ COMP− register

D2 ASND It becomes 1 when in acceleration.

D3 CNST It becomes 1 when in constant speed driving.

D4 DSND It becomes 1 when in deceleration.

D5

AASND

In S-curve, it becomes 1 when acceleration / deceleration
increases.

D12 LMT+ If the driving is stopped by +direction limit signal (nLMTP), it
will become 1.
D13 LMT− If the driving is stopped by −direction limit signal (nLMTM), it
will become 1.
D14 ALARM If the driving is stopped by nALARM from servo drivers, it
will become 1.
D15 EMG If the driving is stopped by external emergency signal (EMGN),
it will become 1.
 The Status Bits of Driving Finishing
These bits are keeping the factor information of driving finishing. The
factors for driving finishing in fixed driving and continuous driving are
shown as follows:

 http://www.icpdas.com 應用程式函式庫 v2.0 193

a. when all the drive pulses are output in fixed driving,
b. when deceleration stop or sudden stop command is written,
c. when software limit is enabled, and is active,
d. when external deceleration signal is enabled, and active,
e. when external limit switch signals (nLMTP, nLMTM) become active,
f. when nALARM signal is enabled, and active, and
g. when EMGN signal is on the Low level.

Above factors “a.” and “b.” can be controlled by the host CPU, and factor
“c.” can be confirmed by register RR2 even the driving is finished. As for
factors “d.” ~ “g.”, the error status is latched in RR2 until next driving
command or a clear command (25h) is written.
After the driving is finished, if the error factor bits D15~D12 become 1,
n-ERR bit of main status register RRO will become 1.
Status bit of driving finishing can be cleared when next driving command is
written, or when the finishing status clear command (25h) is used.

B.10 Status Register 2: RR2
Each axis is with status register 2. The axis specified by NOP command or
the condition before decides which axis’ s register will be read.
This register is for reflecting the error information. When an error occurs,
the error information bit is set to 1. When one or more of D6 to D0 bits of
RR2 register are 1, n-ERR bits of main status register RR0 become 1.

RR2

D0 SLMT+ During the + direction driving, when logical / real position
counter ≥COMP+ (COMP+ enabled, and used as software limit)
D1

SLMT−
During the − direction driving, when logical / real position counter ≤
COMP− (COMPenabled, and used as

 software limit)

D2 HLMT+ When external +direction limit signal (nLMTP) is on its active level

D3 HLMT− When external −direction limit signal (nLMTM) is on its active level

D4
ALARM

When the alarm signal (nALARM) for servo motor is on its active
level

D5
EMG When emergency stop signal (EMGN) becomes Low level.

D6
MULT

This bit is only for the X axis of main chip at the multichip
interpolation. When an error occurs in any axis

 of sub chip during multichip interpolation, it will become 1.

In driving, when hardware / software limit is active, the decelerating

 http://www.icpdas.com 應用程式函式庫 v2.0 194

stop or sudden stop will be executed. Bit SLMT+ / − will not become 1
during the reverse direction driving.

B.11 Status Register 3: RR3

Each axis is with status register 3. The axis specified by NOP command
or the condition before decides which axis’ s register will be read.

This register is for reflecting the interrupt factor. When interrupt
happens, the bit with the interrupt factor becomes 1. The user should set
the interrupt factor through register WR1 to perform the interrupt.

To generate an interrupt, interrupt enable must be set for each factor in
the WR1 register.

RR3

D1 P ≥ C− Once the value of logical / real position counter is larger than that
of COMP− register D2 P < C− Once the value of logical / real position
counter is smaller than that of COMP− register D3 P < C+ Once the value of
logical / real position counter is smaller than that of COMP+ register D4 P ≥
C+ Once the value of logical / real position counter is larger than that of
COMP+ register D5 C-END When the pulse output is finished in the constant
speed drive during an acceleration / deceleration driving D6 C-STA When
the pulse output is started in the constant speed drive during an
acceleration / deceleration driving D7 D-END When the driving is finished
When one of the interrupt factors occurs an interrupt, the bit of the register
becomes 1, and the interrupt output signal (INTN)
will become the Low level. The host CPU will read register RR3 of the
interrupted axis, the bit of RR3 will be cleared to 0, and the interrupt signal
will return to the non-active level. For a 8-bit data bus, all the bits are cleared
when the RR3L register is read.

ICPDAS I-8092F Software User
Manual

195

B.12 Input Register: RR4 / RR5
RR4 and RR5 are used for displaying the input signal status. The bit is 0 if the
input is on the Low level; the bit is 1 if the input is on the Hi level.
These input signals can be used as general input signal when they are not used
as function except for nLMTP/M signal.

RR4

RR5

Bit
Name

Input
Signal

Bit
Name

Input
Signal

n-ST0 n-STOP0 n-IN0 nIN0
n-ST1 n-STOP1 n-IN1 nIN1
n-ST2 n-STOP2 n-IN2 nIN2
EMG EMGN n-IN3 nIN3
n-EX+ nEXPP n-IN4 nIN4
n-EX- nEXPM n-IN5 nIN5
n-INP nINPOS n-LM+ nLMTP
n-ALM nALARM n-LM- nLMTM

B.13 Data-Read Register: RR6 / RR7
According to the data-read command, the data of internal registers will be set
into registers RR6 and RR7. The low word 16 bits (D15 ~ D0) is set in RR6
register, and the high word 16 bits (D31 ~ D16) is set in RR7 register for data
reading.
RR6

RR7

The data is binary formatted; 2’ s complement is for negatives.

	1 Preface
	1.1 Introduction
	1.2 Basic and Macro functions
	1.3 Funciton description

	 2 Basic Settings
	2.1 Code numbers for axes
	2.2 Registration of Modules and getting the LIB version
	 2.3 Resetting Module
	2.4 Pulse Output Mode Setting
	2.5 Setting the Maximum Speed
	2.6 Setting the Active Level of the Hardware Limit Switches
	 2.7 Setting the Motion Stop Method When Limit Switch Is Sensed
	2.8 Setting the Trigger Level of the NHOME Sensor
	 2.9 Setting Trigger Level of the Home sensor
	2.10 Setting and Clearing the Software Limits
	2.11 Setting the Encoder Related Parameters
	2.12 Setting the Servo Driver (ON/OFF)
	2.13 Setting the SERVO ALARM Function
	2.14 Setting the Active Level of the In-Position Signals
	2.15 Setting the Time Constant of the Digital Filter
	2.16 Position Counter Variable Ring
	2.17 Triangle prevention of fixed pulse driving
	2.18 External Pulse Input
	2.18.1 Handwheel (Manual Pulsar) Driving
	2.18.2 Fixed Pulse Driving Mode
	 2.18.3 Continuous Pulse Driving Mode
	 2.18.4 Disabling the External Signal Input Functions

	 2.19 Configure hardware with pre-defined configuration file

	 3 Reading and Setting the Registers
	3.1 Setting and Reading the Command Position (LP)
	 3.2 Setting and Reading the Encoder Counter
	 3.3 Reading the Current Velocity
	3.4 Reading the Current Acceleration
	 3.5 Reading the DI Status
	 3.6 Reading and Clearing the ERROR Status
	3.7 Setting the general Dinigtal output

	4 FRnet Functions (for i8092F only)
	4.1 Read FRnet DI Signals
	 4.2 Write data to FRnet DO

	 5 Auto Homing
	5.1 Setting the Homing Speed
	5.2 Using an Limit Switch as the HOME sensor
	5.3 Setting the Homing Mode
	 5.4 Starting the Homing Sequence
	5.5 Waiting for the Homing sequence to be Completed

	 6 General Motion Control
	6.1 Independent Axis Motion Control
	6.1.1 Setting the Acceleration/Deceleration Mode
	6.1.2 Setting the Start Speed
	6.1.3 Setting the Desired Speed
	6.1.4 Setting the Acceleration
	6.1.5 Setting the Deceleration
	 6.1.6 Setting the Acceleration Rate
	6.1.7 Setting the Value of the Remaining Offset Pulses
	6.1.8 Fixed Pulse Output
	6.1.9 Continuous Pulse Output

	6.2 Interpolation Commands
	6.2.1 Setting the Speed and Acc/Dec Mode for Interpolation
	6.2.2 Setting the Vector Starting Speed
	6.2.3 Setting the Vector Speed
	6.2.4 Setting the Vector Acceleration
	6.2.5 Setting the Vector Deceleration Value
	6.2.6 Setting the Vector Acceleration Rate
	6.2.7 Setting the Number of the Remaining Offset Pulses
	6.2.8 2-Axis Linear Interpolation Motion
	6.2.9 2-Axis Circular Interpolation Motion (an Arc)
	6.2.10 2-Axis Circular Interpolation Motion

	6.3 Continuous Interpolation
	6.4 Set the Interrupt Factors
	6.5 Other functions

	Appendix A (I-8092F Basic Functions)
	A.1 i8092F Command Set
	A.2 Pulse Output Command
	A.3 Profile Acceleration/Deceleration Planning
	A.4 Pulse Output Commands
	A.5 Automatic Home Search
	A.6 Interrupt Control
	A.7 I-8092F Function Library
	A.8 i8092 Command Lists

	Appendix B: MCX312 Registers
	B.1 Command Register: WR0
	B.2 Mode Register1: WR1
	B.3 Mode Register2: WR2
	B.4 Mode Register3: WR3
	B.5 Output Register: WR4
	B.7 Data Register: WR6/WR7
	B.8 Main Status Register: RR0
	B.9 Status Register 1: RR1
	B.10 Status Register 2: RR2
	B.11 Status Register 3: RR3
	B.12 Input Register: RR4 / RR5
	B.13 Data-Read Register: RR6 / RR7

